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the work of the Education Research Center at M.I.T. (formerly 

the Science Teaching Center) is concerned with curriculum im¬ 

provement, with the process of instruction and aids thereto, and 

with the learning process itself, primarily with respect to students 

at the college or university undergraduate level. The Center was 

established by M.I.T. in 1960, with the late Professor Francis L. 

Friedman as its Director. Since 1961 the Center has been sup¬ 

ported mainly by the National Science Foundation; generous 

support has also been received from the Kettering Foundation, 

the Shell Companies Foundation, the Victoria Foundation, the 

W. T. Grant Foundation, and the Bing Foundation. 

The M.I.T. Introductory Physics Series, a direct outgrowth 

of the Center’s work, is designed to be a set of short books which, 

taken collectively, span the main areas of basic physics. The 

series seeks to emphasize the interaction of experiment and in¬ 

tuition in generating physical theories. The books in the series 

are intended to provide a variety of possible bases for introductory 

courses, ranging from those which chiefly emphasize classical 

physics to those which embody a considerable amount of atomic 

and quantum physics. The various volumes are intended to be 

compatible in level and style of treatment but are not conceived 

as a tightly knit package; on the contrary, each book is designed 

to be reasonably self-contained and usable as an individual com¬ 

ponent in many different course structures. 



The present volume is written as an introduction to special 

relativity for students who have a modest background in New¬ 

tonian mechanics and an acquaintance with the rudiments of 

optics and electricity. The approach is traditional (for this 

particular level) in that it does not rest heavily on electromagnetic 

theory but concentrates on the problems of kinematics and 

dynamics. The last chapter, however, deals with some of the 

insights that relativity can provide with regard to the relationship 

between electricity and magnetism. The main substance of this 

book has been used successfully with both first- and second-year 

students at M.I.T. as part of a general introductory physics 

course; the extent and coverage are, however, such that the book 

may also be found suitable as a self-contained introduction to 

relativity for more advanced students. 

This book, like the others in the series, owes much to the 

thoughts, criticisms, and suggestions of many different people, 

both students and instructors. In the latter category, the detailed 

comments of Prof. M. W. Friedlander (Washington University), 

Prof. A. W. K. Metzner (San Diego State College), and Prof. 

Rainer Weiss (M.I.T.) have been particularly helpful. 

A special acknowledgment is due to Prof. Jack R. Tessman 

(Tufts University), who was deeply involved with our earliest 

work on the introductory physics series and has contributed in 

an especially important way to this relativity text. With the 

present author, he taught the first trial version of the material 

at M.I.T. during 1963-1964. The subsequent writing and re¬ 

writing was discussed with him in detail and embodies many of 

his suggestions. In particular, the final chapter, on relativity 

and electricity, is based largely on a much more far-reaching 

analysis by Prof. Tessman, in which the main results of electro¬ 

magnetism, including the acceleration fields, are developed [see 

Am. J. Phys., 34, 1048-1055 (1966), and Am. J. Phys., 35, 523-527 
(1967)]. 

Thanks are also due to Prof. M. K. Smith and Dr. James 

A. Ross for valuable assistance in the preparation of this volume. 

A. P. FRENCH 

Cambridge, Massachusetts 

February 1968 
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In experimental philosophy we are to look upon propositions 

obtained by general induction from phenomena as accurately 

or very nearly true . .. till such time as other phenomena 

occur, by which they may either be made more accurate, 

or liable to exceptions. 

sir Isaac newton, Principia (1686) 

The relativity theory arose from necessity, from serious and 

deep contradictions in the old theory from which there seemed 

no escape. The strength of the new theory lies in the 

consistency and simplicity with which it solves all these 

difficulties, using only a few very convincing assumptions... 

The old mechanics is valid for small velocities and forms the 

limiting case of the new one. 

A. EINSTEIN AND L. INFELD, 

The Evolution of Physics (1938) 



1 
Departures from 

Newtonian 

dynamics 

what is it that you first think of when you see or hear the word 

relativity? Very likely there will come to your mind the name of 

Albert Einstein, or the equation E = me2, or a vision of space 

travelers returning youthful from trips of many years’ duration. 

This is a well-deserved tribute to the enormous intellectual im¬ 

pact—still effective, more than 60 years after the event—of what 

Einstein called his special theory of relativity. And the develop¬ 

ment of this theory by Einstein and others in the years around 

1900 is rightly regarded as one of the greatest strides ever made 

in our way of describing and interpreting the physical world. 

Yet the basic concept of relativity is as old as the mechanics of 

Galileo and Newton. It is, crudely speaking, just the assertion 

that the laws of physics appear the same in many different 

reference frames. What, then, did Einstein do to make his name 

almost synonymous with the title of this book? The answer is 

that he led us to apply the notions of relativity to all our physical 

experience and not merely to a restricted range of phenomena. 

In particular, he asserted that processes involving very rapid 

motions—specifically, motions at speeds of the order of the 

speed of light—are not to be placed in a separate category. But 

the unification that he proposed brought with it some remark- 
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able implications. There were consequences that seemed opposed 

to our intuitions and our common sense, in a way that classical 

theories were not—the increase of inertia with speed, for ex¬ 

ample, or the so-called twin paradox. It was such things as this 

that made Einstein’s formulation of relativity so striking and 

which conferred on it a glamour and a popular interest probably 

never equaled in the whole history of physics. 

We have said that the idea of relativity existed before 

Einstein and was embodied in Newton’s mechanics. But it came 

to be recognized, about 200 years after Newton, that certain 

observed effects—quite small and subtle ones, for the most part— 

could simply not be accounted for if one tried to hold on to all 

the basic features of Newtonian mechanics. Historically the 

recalcitrant facts, demanding a revision of ideas, made their ap¬ 

pearance in electromagnetic phenomena, especially in the prop¬ 

agation of light. It quickly became clear, however, primarily 

through Einstein’s own work, that all of dynamics, and not 

merely the specialized field known as electrodynamics, was 

affected. 

It was typical of Einstein, and a sign of his greatness, that 

he drew conclusions of the most profound and far-reaching kind 

from a bare minimum of data. Lesser men often attempt the 

same thing, of course, but differ from the Einsteins of this world 

in that their grand conclusions or generalizations are usually 

false. In essence, Einstein constructed the special theory of 

relativity out of a single proposition, that in every observation of 

the passage of light from one point to another through empty 

space the time taken is simply the relative separation of the 

points divided by a universal velocity c; it depends in no way on 

any velocity that one’s laboratory may appear to have through 

space. The development of relativity from this result is not 

difficult (once Einstein has shown the way) and is logically clear 

and compelling, and we shall present it in due course. It is a 

development that begins with optics, proceeds to a revised kine¬ 

matics, and shows us how we must rewrite the dynamics of 

particles. But today we can appeal to an immense amount of 

direct evidence concerning the dynamics of particles traveling at 

extremely high speeds. This evidence makes it clear from the 

outset that we must look for a modification of the Newtonian 

scheme if we are to have an acceptable dynamical description of 

familiar particles, such as electrons, at all speeds. And in this 

beginning chapter we shall proceed as quickly as possible to 
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develop some of this revised dynamics. It is only a preview, in 

a way, and it is admittedly short on rigor. But there may be some 

interest and value in seeing how a few of the key results can be at 

least suggested without recourse to most of the formalism of 
relativity theory. 

Our very first task, however, will be to give a reminder of 

what it is that we are going to modify, for without this the rela¬ 

tion between the old dynamics and the new—the amount they 

have in common, as well as their divergences—cannot be fully 

appreciated and understood. 

NEWTON 

Newton’s mechanics concerns itself with the motions of particles 

under the action of forces. A particle is regarded as a material 

point; its motion is described by the position of that point in 

space as a function of time. It is assumed that the separate con¬ 

cepts of space and time are well understood, even though they 

defy adequate definition. Newton believed in an absolute space, 

but he also recognized that one cannot chart the motion of a 

body through this space. Instead, we define the position of one 

body with respect to another: “And so,” as he wrote in the 

Principia, “instead of absolute places and motions, we use rela¬ 

tive ones.”1 

But despite the relativity of position and velocity, we do 

encounter an apparently absolute or fundamental quantity in the 

acceleration. And Newtonian dynamics seizes upon the ac¬ 

celeration, a, and relates this to the force, F, supplied by a par¬ 

ticle’s environment. This is an immensely fruitful procedure, 

because it is found that a single, constant property of the par¬ 

ticle—its inertial mass, m—serves to connect the acceleration of 

the particle with the force, through F = ma. If the value of F 

is given by an explicit law of force—as in the case of universal 

gravitation—classical mechanics acquires the status of a physical 

theory, and Newton’s law becomes much more than a definition 

of F in terms of m and a.2 

’See Sir I. Newton, Mathematical Principles of Natural Philosophy and His 

System of the World (Principia), translated by A. Motte, revised by F. Cajori, 

Univ. California Press, Berkeley, 1962. 

2See A. Einstein, “Physics and Reality,” J. Franklin Inst., 221, 349-382 

(1936); reprinted in Einstein’s Ideas and Opinions, Crown, New York, 1954. 

See also N. Austern, Am. J. Phys., 29, 617 (1961). 
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Even if the law of force is not explicitly given or known, we 

still have one of the key statements of Newtonian mechanics— 

the conservation of linear momentum. Taking the inertial mass 

as a constant property of a body, one can verify (and this was 

one of the experimental foundation stones of mechanics) that the 

sum of the momenta my for two or more interacting bodies is a 

constant, provided the effect of any forces of external origin can 

be ignored. If, for convenience, the momentum is denoted by the 

single vector p, we know that in classical mechanics the ratio 

p/v for a given particle represents a single invariable quantity. 

Finally, going beyond the strict confines of the Newtonian 

scheme, we have the principle of conservation of energy. Given 

any particular law of force, we find that the work done on any 

particle is reflected in a corresponding change of its kinetic 

energy: 

J F • dr = im(v22 - i>i) (1-1) 

Furthermore, energy that has been conferred on a particle in this 

way may be recovered in a different form, as, for example, by 

bringing the particle to rest in a medium, with the liberation of 

thermal energy (i.e., heat). Our faith in the conservation of 

energy is so great (because of a vast body of internally consistent 

evidence) that we would not hesitate, in the example just men¬ 

tioned, to regard the measurement of the heating as being tanta¬ 

mount to a measurement of the particle’s kinetic energy prior to 

impact—provided, of course, we had reason to ignore the possi¬ 

bility of significant energy losses through radiation, sound, me¬ 

chanical deformation, and so on. 

These concepts, then, of space and time, of force, acceleration 

and inertial mass, of momentum and energy, comprise the 

foundations of classical mechanics. Now let us look at some of 

the cracks that have become manifest in that structure after about 

200 years of apparently flawless existence. Most of them (but 

not all) appear in connection with the motion of particles at 

extremely high speeds. 

“THE ULTIMATE SPEED” 

According to the equations of Newtonian mechanics, there is in 

principle no upper limit to the velocity that may be given to an 

object. Imagine, for example, that a body is acted on continually 
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by a constant force equal in magnitude to the force of gravity at 

the earth’s surface. Its acceleration would always have the value 

9.8 m/sec2. After 1 year, starting from rest, its speed would be 

about 3 X 108 m/sec (i.e., equal to the speed of light in vacuum); 

after 2 years it would be 6 X 108 m/sec, and so on. (Take a 

moment to verify these numbers for yourself.) If the object were 

small, one could readily envisage a force that was many times 

larger than mg, bringing about these increases of velocity much 

more quickly—perhaps in a matter of minutes or seconds. Even 

if the force were not constant, one would be able to calculate the 

total amount of work, equal to the gain of kinetic energy K, 

required to cause a body of mass m to travel with any specified 

speed u: v = (2K/m)1/2. But when the attempt is made to ac¬ 

celerate particles to speeds as large as those mentioned above, 

a drastic departure from the predictions of Newtonian mechanics 

is observed. We shall take this phenomenon as our first clear 

example of the fact that classical mechanics is not adequate for 

all dynamical situations. 

Because of its very small mass in relation to its charge, the 

electron is readily accelerated to very high speeds—higher by 

many orders of magnitude than anything in our normal ex¬ 

perience. Thus, for example, an electron traveling from cathode 

to anode of a vacuum tube, with a mere 100 volts between these 

electrodes, would (if it started from rest) arrive at the anode with 

a speed of about 6000km/sec (and its acceleration, if the elec¬ 

trodes were spaced by a few millimeters, would be about 1015g). 

Even under these conditions the Newtonian mechanics meets the 

situation quite well. But if the acceleration is through millions of 

volts, instead of hundreds, the need for a revised dynamics be¬ 

comes glaringly obvious. This has been demonstrated in a filmed 

experiment that explores the relation between speed and kinetic 

energy for electrons of kinetic energies up to 15 MeV.1 

The experimental arrangement is shown schematically in 

Fig. 1-1. The experiment consists in making direct measurements 

of the time of flight for electrons traveling through a linear ac¬ 

celerator (linac, for short). The electrons can be given energies 

up to 1.5 MeV by the purely electrostatic action of a Van de 

Graaff generator that acts as an injector for the linac; they then 

enter the series of drift tubes of the linear accelerator proper and 

are timed over the flight path AB. Higher energies (up to about 

•Film, The Ultimate Speed, by W. Bertozzi, Education Development Center, 

Newton, Mass., 1962. For a full description, see W. Bertozzi, Am. J. Phys., 
32, 551-555 (1964). 
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First 
section 
of Linac 

J I I I I II I 
r 15 MeV Linac 

h 1111111 

Oscilloscope 

Electron burst charge 
distribution as a 
function of time 

1 Equipotential planes 

2 Electron gun 

3 Fast pulser 

4 Van de Graaff 
pressure tank 

5 Phototube 

9 Short tube signaling start 
of electron burst down the 
flight path 

10 Cable transmitting sweep 

signal 

11 Cables transmitting sig 
nals of equal transit times 

6 Window 

7 Light flasher 

8 Charging belt 

12 Aluminum disk to stop 

electrons and signal ar 
rival of electron burst at 
end of flight path 

Fig. 1-1 Schematic diagram of apparatus to measure 
time of flight of energetic electrons. (The “ultimate 
speed” experiment, by W. Bertozzi.) 

15 MeV) can be obtained by operating the radiofrequency system 

of the linear accelerator; in the main part of the film use is made 

of this for one observation only to give electrons an energy of 

4.5 MeV by operating just the first section of the linac (the 

section immediately following the point A). Even in this latter 

situation, however, the electrons travel the whole distance AB 

with almost constant speed, as we shall see in a moment. 

The electrons are released in short bursts (of about 

3 X 10-9 sec duration) from the electron-gun system in the 

negative high-voltage terminal of the Van de Graaff accelerator. 

Insulated electrodes at A and B pick up electric signals as the 

burst passes by. These impulses are carried to a cathode-ray 
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TABLE 1-1 

Kinetic energy 
K, MeV 

Flight time 
t, X 10~8 sec 

Electron speed 
v, X 108 m/sec v2, X 1016m2/sec2 

0.5 3.23 2.60 6.8 

1.0 3.08 2.73 7.5 

1.5 2.92 2.88 8.3 

4.5 2.84 2.96 8.8 

15 2.80 3.00 9.0 

oscilloscope by cables that are made equal in length. The electric 

signals then take equal times to reach the oscilloscope from the 

electrodes, so that the two pulses displayed on the oscilloscope 

(Fig. 1-2) provide a true measure of the time taken by the elec¬ 

tron burst to travel from A to B. In Fig. 1-2, for example, this 

time (/) is about 3.3 X 10-8 sec (one main division of the 

horizontal scale = 10-8 sec). The flight path (/) between A and 

B is measured to be 8.4 m. Thus from the basic definition of 

speed v we have 

V = l,~ 3.3 x\o-*~2-5X1°*m/SeC 

This measurement was for electrons accelerated through 0.5 MV 

(500,000 volts) by the Van de Graaff machine. 

In Table 1-1 we summarize the results of the complete 

experiment. The most cursory inspection of these results shows 

that they are not at all what one would have if Newtonian me¬ 

chanics were applicable. Over-all, the kinetic energy is raised by 

a factor of 30, so one might have looked for a factor of 5.5 in the 

speed (since v ~ K112 according to classical mechanics). In¬ 

stead, there is an increase of only about 15%. The increase of v 

between 1.5 and 4.5 MeV is barely detectable within the accuracy 

of the experiment. One might therefore question whether the 

Fig. 1-2 Oscillo¬ 

scope trace showing 

pulses due to a burst 

of electrons of 

0.5 MeV at the 

beginning and end of 

an 8.4-m flight path. 

(Reproduced from the 

film, “The Ultimate 

Speed.") 
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Fig. 1-3 Results of 
the “ultimate speed” 
experiment—v2 as a 
function of kinetic 
energy for electrons— 
showing asymptotic 
approach to v — c. 

electrons are in fact being given the energy calculated from the 

value of qV (charge times accelerating voltage), which success¬ 

fully describes the kinetic energy gained when V is only of the 

order of 100 volts. In the film this question is answered by mak¬ 

ing a direct calorimetric measurement of the energy of the elec¬ 

trons at the point B. There is no doubt about it; the energy is 

there. 

In Fig. 1-3 we show a comparison of the experimental re¬ 

sults with the classical predictions. It is a graph of v2 against K. 

Classically, we should have 

Numerically, this gives us 

v2 (m2/sec2) = 3.5 X 1017AT (MeV) (l-2b) 

We know that this works very well for electron energies of about 

1 keV or less, but we see that even at the lowest energy of the 

linac experiment (0.5 MeV) the value of v2 predicted by Eq. (1-2) 

is too high by a factor of about 2. For higher energies the dis¬ 

crepancy becomes even more serious. Rather than increasing in 

proportion to K, the values of v2 show all the signs of asymp¬ 

totically approaching a limit, especially when one recalls the 

measurement at 15 MeV, not shown on the graph in Fig. 1-3. 

The value of v corresponding to this asymptote is 3.0 X 108m/sec. 
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These results are consistent with the proposition that (to quote 

the last sentence of the film): “There is a speed limit for any 

object, and this limit is the speed of light.” 

The above result is very remarkable indeed. Why should one 

not be able to give a particle an arbitrarily high speed, if one is 

able to give it as much energy as one wishes? To appreciate in 

another way how startling this result is, suppose that electrons 

are being continuously accelerated in a long evacuated tube, 

reaching a final energy of several MeV. After the first 0.5 MeV of 

acceleration, the electrons have a speed of about 2.6 X 108 m/sec 

(cf. Table 1-1), i.e., about 85% of the speed of light. Now 

imagine oneself in a frame of reference moving at this speed in 

the same direction. In this frame the electrons at this stage of 

their acceleration appear to be at rest. Granted the possibility 

of continued acceleration, one can readily conceive of the elec¬ 

trons picking up energy and speed until they have the equivalent 

of 0.5 MeV of kinetic energy and a speed of 2.6 X 108 m/sec 

with respect to this new frame. But should not this mean that, 

as observed in the laboratory, the electrons at this stage have a 

speed of 5.2 X 108 m/sec, or about 1.7 times c? That is what 

our ordinary rules of velocity addition would suggest, but it does 

not happen, as the ultimate-speed experiment shows. The be¬ 

havior of the electrons, as studied via measurements made 

throughout in the laboratory frame, demands a fundamental 

revision of the rules for combining velocities, i.e., the rules by 

which a given motion is described from the standpoint of dif¬ 

ferent reference frames. We must find a new version of kine¬ 

matics to deal with this. You may wish to pursue this question 

immediately. If so, proceed at once to Chapter 2. In the re¬ 

mainder of this present chapter, however, we shall explore further 

some of the dynamical questions raised by the ultimate-speed 

experiment. In particular, since the limiting speed of electrons is 

equal to the speed of light, we shall take a close look at the 

dynamics of what one may call the particles of light, i.e., photons. 

PHOTONS 

The speed of light, c, has long been recognized as one of the 

fundamental constants of nature. But it acquires a new interest 

when we have a photon picture of radiation. Is it really true 

that these photons—particles characterized by the radiation 
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TABLE 1-2: SPEED OF PHOTONS 

Frequency, sec 1 Photon energy, eV Wavelength, m Speed (with error), X 108m/sec 

4.7 X 107 1.9 X 10-7 6.4 2.9978 ± 0.0003 

1.7 X 108 7.0 X 10“7 1.8 2.99795 ± 0.00003 

3.0 X 108 1.2 X IO”6 1.0 2.99792 ± 0.00002 

3.0 X 109 1.2 X 10"5 1.0 x io-1 2.99792 ± 0.00009 

2.4 X 1010 1.0 x io-4 1.2 X IO"2 2.997928 ± 0.000003 

7.2 X 1010 3.0 X IO"4 4.2 X 10“3 2.997925 ± 0.000001 

5.4 X 1014 2.2 5.6 X 10-7 2.997931 ± 0.000003 

1.2 X 1020 5.1 X 10s 2.5 X 10"12 2.983 ± 0.015 

4.1 X 1022 1.7 X 108 7.3 X IO"15 2.97 ± 0.03 

frequency v—all have exactly the same speed c, although their 

energies hv may vary over a colossal range? The answer, as far 

as all our experience goes, is yes. Table 1-2 collects some results 

whose total span represents almost a factor of 1015 in the photon 

energy.1 It may be seen that the accuracies of the results for 

different photon energies differ widely. The most accurate deter¬ 

minations are for visible light and for microwaves of about 1 cm 

wavelength; the photon energies differ by a factor of 104 but the 

speeds are the same to 1 part in 10°.2 And from the first and 

the last entries, we see that television transmission photons of 

about 10“7 eV and gamma rays of about 100 MeV have the 

same speed to an accuracy of 1%, despite the energy factor of 

1015. This is clearly a result of the first importance, and stands 

in contrast to the systematic increase of speed with energy for 

such particles as electrons. We may note, however, that the 

results of the ultimate-speed experiment make the contrast less 

abrupt, for it suggests (and a great body of other experience 

confirms) that an electron with a kinetic energy of a few MeV 

has a speed within 1% of the speed of light, c, and that no in- 

*For references, and excellent accounts of experiments, see J. F. Mulligan 

and D. F. McDonald, Am. J. Phys., 25, 180 (1957); J. H. Sanders, The 

Fundamental Atomic Constants, Oxford Univ. Press, New York, 1961; and 

J. H. Sanders, The Velocity of Light, Pergamon Press, Oxford, 1965. 

2An even more precise direct comparison of the speeds for widely different 

wavelengths has been obtained from the study of flares (sudden outbursts) 

occurring in stars several light-years away. It has been found that radio 

waves with X = 1.2 m arrive at the earth at the same time as visible light 

with X = 5.4 X 10~7 m. The accuracy (a few parts in 107) of this com¬ 

parison is limited chiefly by uncertainty about the mechanism of flare pro¬ 

duction. See B. Lovell, F. L. Whipple, and L. H. Solomon, Nature, 202, 

377 (1964). 
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crease of energy, even by many orders of magnitude, can do more 

than to narrow down the slight deficiency. 

THE ENERGY-MOMENTUM RELATION FOR PHOTONS 

Let us turn now to an important dynamical property of photons— 
the relation between energy and momentum. If a photon has 

energy E (= hv) it has an associated linear momentum of mag¬ 

nitude p such that 

E = cp (1-3) 

The best (or certainly the most extensive) experimental support 

for this result is in a sense indirect. It is provided by the enormous 

body of data in nuclear and elementary-particle physics, where 

the analysis of collisions between individual photons and other 

particles is made by assuming Eq. (1-3) to hold.1 Any incon¬ 

sistency for that range of photon energies—from MeV to GeV2— 

would certainly have become apparent. The only experiments 

deliberately designed to test the energy-momentum relation have 

been made not with individual photons but with continuous 

beams of light, in studies of the radiation-pressure phenomenon. 

Such experiments involve the incidence of huge numbers of 

photons (for example, 1 watt of visible light represents a flow of 

about 3 X 1018 photons/sec) and can be adequately described 

and analyzed in terms of a steady flow of radiant energy, with¬ 

out reference to the photonic structure of the radiation. Indeed, 

the fact is that Eq. (1-3), as a general statement of the connection 

between energy and momentum for radiation in free space, was 

widely accepted long before the discovery of quantum behavior, 

because it was a necessary consequence of Maxwell’s electro¬ 

magnetic theory—the same theory that extracted the correct 

value of the speed of light from the physics of basic electric and 

magnetic phenomena. The radiation-pressure experiments were 

regarded primarily as a verification of Maxwell's theory. How¬ 

ever, given a photon picture, they also imply that Eq. (1-3) holds 

for individual photons. 

All radiation-pressure experiments are basically alike. They 

'We shall consider such collisions in Chapter 6. 

21 GeV = 109 eV. This internationally adopted abbreviation (short for 

giga electron volt) is replacing BeV, which can cause ambiguity, because the 

European billion is 1012, not 109. 
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consist in measuring the force F exerted on a surface by a known 

flux (measured by the incident power W) of radiant energy. The 

surface in question is a thin metal vane suspended on a delicate 

torsion fiber; the energy flux is measured by its heating effect. 

Account must be taken of the fraction p of the incident radiation 

that is reflected by the foil, because the reflected light contributes 

to the radiation force. (A perfectly reflecting surface would 

experience twice the force of a perfectly absorbing one for the 

same incident flux of radiation.) 

The experiments almost always referred to in connection 

with radiation pressure are those of Nichols and Hull.1 Cer¬ 

tainly their measurements were very carefully and skillfully made, 

and their results verified Eq. (1-3) to better than 1%. But their 

work was done before the availability of high vacua in the 

laboratory, and they had to resort to special procedures to 

separate the true radiation pressure from a spurious radiometer 

effect. This is the phenomenon that an absorbing surface, be¬ 

coming warmed by incident radiation, experiences a slight push 

from the gas adjoining it. The effect is very pronounced unless 

the vacuum is made extremely good—or, alternatively, quite bad! 

It can easily swamp the true radiation pressure and is the driving 

agency in the toy radiometers on sale in drugstores. Such radiom¬ 

eters always turn the wrong way, in fact, compared to what 

one would expect from true radiation forces. (Check this through 

your own observations if you have a chance to do so.) The very 

first quantitative experiment on radiation pressure (by a Russian, 

P. Lebedef, in 1901) was in fact done in a fairly good vacuum, but 

radiometer effects were nevertheless appreciable. The first really 

clean measurement of radiation pressure appears to have been 

achieved in a little-known investigation made in 1923 by Gerlach 

and Golsen.2 Working with vacua better than 10-6torr,3 

they rendered the radiometer effect inappreciable. The experi¬ 

ment can be regarded as a test of the following relation, arising 

from Eq. (1-3): 

m + p) c = ___ (1-4) 

using the quantities already defined. The right side of this equa- 

■E. Nichols and G. F. Hull, Phys. Rev., 13, 307-320 (1901); 17, 26-50, 
91-104 (1903). Also G. F. Hull, Phys. Rev., 20, 292-299 (1905). 

2W. Gerlach and A. Golsen, Z. Physik. (Leipzig), 15, 1-7 (1923); A. Golsen, 
Ann. Phys., 73, 624-642 (1924). 

31 torr = 1 mm of mercury at 0°C. 
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TABLE 1-3: RADIATION-PRESSURE EXPERIMENT 

Material 
of vane 

Reflection 
coefficient p 

Incident power 
W, X 10-2 watt 

Measured force 
F, X 10“10 newton 1 + p)/F, X 108 m/sec 

Pt 0.60 6.07 3.14 3.09 

Pt 0.60 2.80 1.44 3.11 

Ni 0.43 6.39 3.23 2.83 

A1 0.81 6.39 3.91 2.96 

A1 0.81 2.78 1.74 2.89 

Av. 2.98 

tion is made up of the quantities that were directly measured in 

the radiation-pressure experiment. W is, of course, the rate of 

arrival of energy and F is the rate of change of momentum of 

the radiation. It can then be tested whether this combination of 

W, p, and F is indeed equal to the speed of light. Table 1-3 

shows the results of analyzing Golsen’s data in this way. Thus 

the correctness of Eq. (1-3) is experimentally confirmed with an 

accuracy of about 2%. 

The relation E = cp for photons may be compared with the 

relation connecting kinetic energy, speed, and momentum for a 

particle in Newtonian mechanics. In the latter case we have 

K = \vp. Since the energy of a photon is all kinetic (for photons 

simply cease to exist when we try to stop them in an absorber), 

we might have been tempted to propose the relation E = \cp 

(wrong!) for photons. This discrepancy might prompt one to 

ask what happens to the relation between kinetic energy and 

momentum for electrons as their speed is increased from rela¬ 

tively low values (< 0.1c, say) up to values about equal to c. 

The answer is that at low energies (K < 1 keV) the relation¬ 

ship is fairly accurately Newtonian,1 but that at high energies 

(K > 0.1 MeV) the momentum becomes significantly less than 

one would calculate from the value of 2K/v, and at very high 

energies (K > 50 MeV) is given by K/c with an accuracy of 

better than 1%. (The evidence for this is to be found in a study 

of atomic collisions involving energetic electrons; we shall say 

more about such processes later.) Thus, just as with the relation 

between kinetic energy and speed, one sees a smooth but un¬ 

mistakable departure from Newtonian behavior when sufficiently 

high energies, and speeds approaching that of light, are involved. 

‘See the film, Momentum of Electrons, by J. G. King, Education Development 
Center, Newton, Mass., 1963. 
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This serves to reinforce our belief that the dynamics of photons 

and of other particles can be brought, for some purposes at least, 

within the same descriptive framework. Our next step will be to 

suggest what that framework might be. Our argument will 

appeal to one's sense of what is plausible; it will not be logically 

inescapable. But as the old saying goes, “the proof of the pudding 

is in the eating,” and we shall see how beautifully one can de¬ 

scribe the transition from Newtonian to non-Newtonian behavior 

on the basis of our conclusions (which are indeed precisely those 

of special relativity). 

MATTER AND RADIATION: THE INERTIA OF ENERGY 

Are not gross Bodies and Light convertible into one another, and 

may not Bodies receive much of their Activity from the Particles 

of Light which enter their Composition? 

Newton, Opticks (4th ed., 1730) 

It would be quite wrong to suggest that Newton had really 

anticipated 20th-century physics to the extent that the above 

quotation might imply, but his provocative query is superbly 

appropriate as an introduction to the discussion that we shall 

now undertake. For we shall consider the intimate connection 

between the inertia of ordinary matter and the energy of radiation, 

and in so doing we shall develop some dynamical results that 

apply equally to photons and “gross bodies.” We shall obtain, 

as one of the consequences, a full account of the relation between 

speed and kinetic energy for the electrons in the ultimate-speed 

experiment. 

Our starting point will be a gedanken experiment (literally a 

“thought experiment,” i.e., a fictitious, not really feasible ex¬ 

periment) which was invented by Einstein himself in 1906.1 The 

purpose of it is to suggest that energy must have associated with 

it a certain inertial mass equivalent.2 We suppose that an amount 

E of radiant energy (a burst of photons) is emitted from one end 

of a box of mass M and length L that is isolated from its surround¬ 

ings and is initially stationary [Fig. 1—4(a)). The radiation 

carries momentum E/c. Since the total momentum of the system 

remains equal to zero, the box must acquire a momentum equal 

JA. Einstein, Ann. Phys., 20, 627-633 (1906). 

2By inertial mass we mean the ratio of linear momentum to velocity. 
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Fig. 1-4 Einstein's box—a 

hypothetical experiment in 

which a box recoils from its 

initial position (a) to a final 

position (b) as a result of a 

burst of radiant energy 

traceling from one end of the 

box to the other. 

to —E/c. Hence the box recoils with a speed v, given by 

After traveling freely for a time At (= L/c very nearly, provided 

v « c), the radiation hits the other end of the box and conveys 

an impulse, equal and opposite to the one it gave initially, which 

brings the box to rest again.1 Thus the result of this process is to 

move the box through a distance Ax: 

FL 

(1"6) 

But this being an isolated system, we are reluctant to believe that 

the center of mass of the box plus its contents has moved. We 

therefore postulate that the radiation has carried with it the 

equivalent of a mass m, such that 

mL + M Ax = 0 (1-7) 

Putting the last two equations together, we have 

or E = me 

For the man on the street, Einstein and relativity are prob¬ 

ably epitomized by this result. For the physicist, its importance 

is not lessened by its becoming hackneyed; it asserts a funda¬ 

mental inertia of energy. Although the calculation as we have 

presented it (which differs somewhat from Einstein’s original 

version) points in the first instance to the mass associated with 

radiant energy, one quickly recognizes that the implications are 

much wider than this. When the radiation is emitted from one 

end of Einstein’s box, that end must surely suffer a decrease, by 

•If you feel that more careful account should be taken of the recoil of the 
box and its effect on the time and distance of transit of the radiation, see 
Problem 1-13. 
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the amount E/c2, in its inertial mass. Likewise, the absorption 

of the radiation at the other end means an addition to the mass 

of that portion. Once the energy has been absorbed, it loses its 

identification as the energy of photons and ultimately becomes 

just an addition to the thermal energy. And we are quickly led 

to the idea that energy in any form has the mass equivalent 

defined by Eq. (1-8)—a general principle of the inertia of energy.1 

The prime example of the mass-energy equivalence, to which 

we owe our continuing existence, is provided by thermonuclear 

reactions occurring in stars such as the sun. Observation tells 

us that radiant energy is reaching us from the sun at the rate of 

1.35 X 103 watts/m2. Given this figure and Eq. (1-8), we can 

infer that the mass of the sun is decreasing at the rate of about 

4.5 X 106 tons/sec—an impressively rapid loss, even though it is 

only about 1 part in 1013 of the sun’s mass per year. This comes 

about through chains of nuclear reactions, chief among which is 

the sequence by which hydrogen (!H) is converted to helium 

(4He). One must, of course, have four hydrogen atoms to end 

up with one helium atom, and the process takes place in several 

separate steps. One of these steps is particularly worth men¬ 

tioning here, because it is a simple and remarkably direct ex¬ 

ample of the equivalence of the mass of ordinary matter and the 

energy of photons. It is this: 

p + D —> 3He + 7 (1-9) 

A proton fuses with a deuteron D (the nucleus of hydrogen-2, 

containing one proton and one neutron), making a system of two 

protons and one neutron, which is the nuclear composition of 

3He. But, as mass-spectrometer measurements show us, the 

mass of this combination is greater than the mass of 3He in its 

normal state. Here are the approximate values: 

Proton 

Deuteron 

P + D 

3He nucleus 

Mass excess 

1.6724 X 10-27kg 

3.3432_ 

5.0156 

5.0058 

9.8 X 10_3Okg 

This amount of mass is carried off by a photon (a 7 ray) as in¬ 

dicated by Eq. (1-9). The energy of that photon is given by 

■For a fine discussion of this question, see M. von Laue’s article “Inertia 
and Energy” in Albert Einstein: Philosopher-Scientist, Vol. II, (P. A. Schilpp, 
ed.), Harper Torchbook, Harper and Row, New York, 1959. 
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Eq. (1-8): 

E = me2 = 9.8 X IO-30 X 9.0 X 1016 

= 8.8 X 10-13 joule 
= 5.5 MeV 

This process has been studied in the laboratory, and 7 rays of 

the expected energy have been observed.1 It should perhaps be 

added that such reactions, when they occur as thermonuclear 

reactions in the sun, require temperatures of the order of 107 °K 

and thus take place only in the inner regions. Gamma rays, such 

as those just considered, are completely absorbed before reaching 

the sun’s surface, and their energy finally escapes in photons with 

individual energies of the order of only 1 eV—infrared, visible, 

and ultraviolet—that constitute the familiar solar spectrum. 

The equation E = me2 has (at least in popular accounts) 

been so exclusively linked to nuclear transformations as to divert 

attention from its universality. But the message of Einstein’s 

equation is that any change AE in the energy of a body implies 

a corresponding change Am in its inertial mass: 

A E = c2Am (1-10) 

A golf ball in motion has more mass than the same golf ball at 

rest. The heated filament of a lamp has more mass than the same 

filament when cold. A charged capacitor has more mass than the 

same capacitor uncharged. And so on. Because, in terms of 

familiar magnitudes, the mass associated with a given amount of 

energy is exceedingly small (e.g., the energy used per day for 

domestic purposes in a city of a million people has a mass equiv¬ 

alent of only about 1 g), this intimate connection between the 

two was long unrecognized. Einstein regarded the discovery of 

this connection as being extremely important. To quote his 

own words2: 

The most important result of a general character to which the 
special theory has led is concerned with the conception of mass. 
Before the advent of relativity, physics recognized two con¬ 
servation laws of fundamental importance, namely, the law of 
the conservation of energy and the law of the conservation of 
mass; these two fundamental laws appeared to be quite inde- 

‘W. A. Fowler, C. C. Lauritsen, and A. V. Tollestrup, Phys. Rev., 76, 1767 
(1949). 

2A. Einstein, Relativity, Crown, New York, 1961. 
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pendent of each other. By means of the theory of relativity they 
have been united into one law. 

Perhaps one of the best ways to appreciate the pervasive 

character of the mass-energy equivalence is to consider a single, 

neutral atom in a piece of ordinary matter. From one point of 

view it is just one of a collection of what Newton called “solid, 

massy, hard, impenetrable, movable Particles.”1 The question 

of any inner structure does not arise, and it seems almost obvious 

that the atom’s inertial property should be described by a single 

quantity that we call the mass. But now consider this same atom 

from the standpoint of present-day knowledge. It is a complicated 

assembly of electrons, neutrons, and protons (and if we want to 

probe more deeply, there is finer structure yet). The mass of 

the atom as a whole contains positive contributions from the 

kinetic energies of its swiftly moving constituents, and contri¬ 

butions of both signs (predominantly negative) from the po¬ 

tential energy of their electrical and nuclear interactions. (Note 

that a force of attraction between two particles automatically 

represents a negative contribution to the total mass of the sys¬ 

tem.2) Any change in the internal state of the atom is accom¬ 

panied by a flow of energy into or out of it, with an associated 

increase or decrease in its mass. The ability of the constituents 

to cohere depends on the fact that their total energy in this con¬ 

figuration is less than if they were all separated from one another. 

In these terms, then, the mass of an atom is the result of a re¬ 

markable and subtle synthesis. Yet it serves to characterize the 

whole atom in every dynamical context—including gravitation— 

in which it moves as a single unit. 

ENERGY, MOMENTUM, AND MASS 

Let us now try to put together some of the results we have dis¬ 

cussed. For photons we have 

E = cp 

and 

m = 
E 

c2 

(1-3) 

(1-8) 

■Sir I. Newton, Opticks, 4th ed., 1730; reprinted in revised form by G. Bell, 

London, 1931; Bell edition reprinted by Dover, New York, 1952. 

2Provided the strength of the attractive force gets less with increasing separa¬ 

tion, which is true of all such forces between elementary particles in atoms. 
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(the first experimental, the second based on Einstein’s box). 

Combining these, we have 

« = f 0-11) 

In Newtonian mechanics, however, we have 

/« — 
£ 
D 

d-12) 

It looks as though we might regard Eq. (1-11) as a particular 

case of Eq. (1-12), for v = c. If, further, we suppose that Eq. 

(1-8) describes a universal equivalence of energy and inertial 

mass, we can combine Eqs. (1-8) and (1-12) into a single state¬ 

ment: 

E = 

2 
c_p 

V 
(1-13) 

Now in classical mechanics we are never concerned with 

absolute energies but only with energy differences, and with the 

transformation between one form of energy and another. A 

particle suffers a change of potential energy, for example, and its 

kinetic energy undergoes a corresponding change, so that the 

total energy remains constant. The basis for analyzing all such 

situations is Newton's law. The increment of kinetic energy 

corresponds to the work done by external forces,1 and we have 

dE = Fdx = ^dx 
dt 

i.e., 

dE — v dp (1-14) 

If we accept Eqs. (1-13) and (1-14) we can obtain from them a 

relationship, now proposed as a general one, between energy 

and momentum for a particle. We do this by multiplying to¬ 

gether the left and right sides of the two equations, and in¬ 
tegrating: 

EdE = c2pdp 

Therefore, 

E2 = c2p2 + E02 (1-15) 

where E02 is a constant of integration, written explicitly as the 

square of some constant energy. 

'The ultimate-speed film presents evidence that, even under conditions where 

some of the features of Newtonian mechanics have broken down, the in¬ 

crease of energy (kinetic energy) of an electron is still equal to the work 

calculated from the electrostatic force multiplied by the distance traveled. 
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From here it is possible to proceed in several ways. For 

example, we can substitute in Eq. (1-15) the relation cp = Eo/c 

from Eq. (1-13). This leads at once to the following result: 

E(u) = 
Eq 

(1 - u2/c2)l/2 
(1-16) 

For v « c we can approximate this exact result by the binomial 

expansion, neglecting terms of higher order than v2/c2. 

[Approximate result (v « c)] E(v) « Eo + i °2 (l-!?) 

If Eq. (1-17) is to harmonize with Newtonian mechanics at low 

velocities, we must identify E0/c2 with the classical inertial mass 

of a particle: Let us denote this by m0. Then Eqs. (1-8) and 

(1-16) together lead to an explicit variation of inertial mass with 

speed: 

(1 - t>2/c2)1/2 
(1-18) 

The quantity m0, which in Newtonian mechanics would be the 

inertial mass of a body, now assumes a new role as the rest mass 

of the body for v = 0; at any other speed the inertial mass is 

greater.1 

An increase of inertial mass with speed is of course implied 

as soon as one embraces a general principle of the inertia of 

energy. The particular form of variation expressed by Eq. (1-18) 

is shown graphically in Fig. 1-5, together with some experi¬ 

mental results based on the electric and magnetic deflection of 

energetic electrons. 

Equations (1-15) and (1-18) are two of the central results 

of the new dynamics; the first of them—the relation between 

energy and momentum—will prove to be of special importance 

and applicability. But the kinetic energy of a particle, so valuable 

a quantity in classical dynamics, now takes on a secondary status. 

It is merely the difference between the total energy E and the 

rest energy E0: 

K = 
2 

moc 
1 

(1 - v-/c2T/2 
(1-19) 

Of course K remains a quantity of practical importance, because 

it is the measure of the extra energy conferred on a particle 

'And the quantity Eo (= m0c2) is the rest energy. Thus for electrons (for 

example) we have m0 = 9.11 X 10-31 kg, Eo = 8.2 X 10-14 joule = 

0.51 MeV. 
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Fig. 1-5 Variation 

of inertial mass with 

speed for electrons. 

Based on data of 

Kaufmann (1910), 

Bucherer (1909), and 

Guye and Lavanchy 

(1915). (After R. S. 

Shankland, Atomic 

and Nuclear Physics, 

Macmillan, New 

York, 1961.) 
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through the work done by external forces. Note that K is not 

obtained by substituting into the expression \mv2 the value of m 

calculated from Eq. (1-18)—a frequently made error, because 

the temptation to cling to the Newtonian form of the kinetic 

energy is very strong. 

At the risk of seeming repetitious, let us reemphasize the 

significance of m(v) as defined by Eq. (1-18). It describes the 

inertial property of a body moving with velocity v, so that the 

momentum p is given by the equation 

p = m(o)v (1-20) 

It also describes the total energy content of the body, so that 

E = m(v)c2 (1-21) 

Now it is the quantities p and E, rather than m(v) by itself, that 

figure in any actual dynamical situation. In this sense the vari¬ 

able mass m(o) is just a convenient construct which, for example, 

allows us to preserve the form of the Newtonian statement that 

momentum is mass times velocity. Many physicists prefer to 

reserve the word mass to describe the rest mass m0, a uniquely 

defined property of a given particle, But this is essentially a 

matter of taste.1 Whatever words one elects to use, there is no 

disagreement on the fact that Eqs. (1-20) and (1-21) describe 

the momentum and total energy of a particle, where m(v) is 

given by Eq. (1-18). 

'And one cannot escape the fact that, for almost any particle, even the rest 

mass involves contributions associated with the motions and kinetic energies 

of its constituents. 
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The denominator (1 — v2/c2)112 appears so often in special 

relativity, and is so awkward to write, that nearly all discussions 

of relativity make use of a single symbol, 7, defined as follows. 

Put 

1 
“ (1 _ V2/C2)II2 (1-22) 

Then we have 

m = 7«o (1-23) 

p = 7/ttov (1-24) 

E = Jmoc2 (1-25) 

where in using Eqs. (1-23) to (1-25) we must remember that 7 

depends on the speed v according to Eq. (1-22). 

IS THE NEW DYNAMICS CORRECT? 

It is important to ask whether Eq. (1-19) does indeed provide a 

correct account of the relation between speed and kinetic energy 

as observed, for example, in the linac experiment. Rearranging 

the result, we have 

1 + K/moc2 = (1 - v2/c2)-112 

Therefore, 

1 - v*/c2 = (i + K/moc2)-2 

or 
v2 = c2[l - (1 + K/moc2)-2] (1-26) 

Clearly the rest energy m0c2 provides a natural unit in which to 

measure the extra energy K that is added to a particle by means 

of an acceleration process. We can, in fact, draw up a table 

showing how the speed would depend on K for any particle 

whatsoever (Table 1-4). 

Given that, for electrons, m0c2 = 0.51 MeV, we can readily 

plot a curve of v2 in m2/sec2 against Kin MeV. This curve has been 

drawn in on the graph of the data in the ultimate-speed experi¬ 

ment (Fig. 1-3). It may be seen that the agreement between 

theory and experiment is very good, and speaks strongly for the 

correctness of the revised dynamics, as does the measured varia¬ 

tion of mass with speed, shown in Fig. 1-5. 

If we wanted to plot a curve of v2 versus K for protons, all 

24 Departures from Newtonian dynamics 



TABLE 1-4: SPEED VERSUS KINETIC ENERGY FOR PARTICLES 

K/moc2 (1 + K/moc2)-2 v2/c2 v/c v2, X 1016 m2/sec2 

0.1 0.8264 0.417 1.56 

0.2 0.6944 0.553 2.75 

0.3 0.5917 0.639 3.67 

0.5 0.4444 0.5556 0.745 5.00 

1.0 0.2500 0.7500 0.866 6.75 

2.0 0.1111 0.8889 0.943 8.00 

5.0 0.0278 0.9722 0.986 8.87 

10.0 0.0083 0.9917 0.996 8.93 

30.0 0.0010 0.9990 0.999 8.99 

we would need to do would be to put m0 — 1.672 X 10-27 kg, 

which gives m0c2 = 0.938 GeV (or 938 MeV), and Table 1-4 

would provide the rest of the information needed. The fact that 

this does indeed give correct results for protons is amply attested 

in the operation of big nuclear accelerators, and there is plenty 

of evidence that Eq. (1-26) holds for particles of all kinds. 

Among the various features of these modified laws of motion, 

the phenomenon of the limiting speed c is perhaps the most 

noteworthy. It means that energy (and mass) can be piled onto 

atomic particles without increasing their speed appreciably. To 

see in detail how this works, it is convenient to rewrite Eq. (1-16) 

as follows: 

(1 - v2/c2)112 = Eo/E 

Therefore, 

v2/c2 = 1 - (Eo/E)2 (l-27a) 

and 

v/c = [1 - (Eo/E)2]1'2 

For E » E0, we then have, approximately, 

e/c « 1 — i(Eo/E)2 (1—27b) 

For example, the Harvard-M.I.T. electron accelerator has as its 

injector a linear accelerator (like the one used in the ultimate- 

speed film) that gives the electrons 15 MeV energy. The main 

accelerator brings the electrons up to about 5 GeV (= 5000 MeV). 
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Using these values, one finds 

Injection from linac (15 MeV) —» v/c ~ 0.9995 

Final energy (5 GeV) —> v/c « 0.99999995 

Thus the change of v/c after the preliminary acceleration is only 

about 5 parts in 104. These big nuclear machines might ap¬ 

propriately be called “ponderators”1 rather than accelerators, 

for to an excellent approximation they do just add mass to the 

particles injected into them, with no significant increase in the 

speed as such. 

MOTION UNDER A CONSTANT FORCE 

The simplest dynamical problem in classical mechanics is the 

motion of a body under a constant force. Let us see how this 

problem is modified in the new dynamics. Suppose a force F 

acts on a body for a time t (we assume one-dimensional motion); 

the body is assumed to be initially at rest, and ends up with a 

speed v. Then 

Ft = mv 

Therefore, 

mov 

(1 - t-2/c2)1/2 

and 

1 — v2/c2 = (mov/Ft)2 

c2 = c2[l + {moc/Ft)2] 

c(t) 
c 

[1 + (moc/Ft)2]l/2 

(1-28) 

(1-29) 

This is a rather complex-looking result. Let us consider two 

extreme cases: 

(a) Ft <5C moc: 

{moc/Ft)2 » 1 

Therefore, 

. . c F 
v{t) ~ 7-7TT7 = — t 

{moc/Ft) mo 

(b) F/» moc: 

{moc/Ft)2 —> 0 

’This name was first proposed around 1945 by Prof. A. G. Hill of M. I. T. 
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Therefore, 

l(0 « c 

Case (a) corresponds to ordinary Newtonian mechanics. 

Case (b) displays the now-familiar property of a limiting constant 

speed c for motion under any force, no matter how large it is or 

for how long it is applied. 

“EINSTEIN’S BOX UNHINGED” 

According to our present beliefs as expressed by special rela¬ 

tivity, the speed of light in free space represents an upper limit, 

not only to the speed of material particles such as electrons, but 

also to the speed with which an interaction of any kind can be 

propagated—gravitational, nuclear, electric, etc. Were this not 

so, it would be possible (as we shall discuss later) to arrive at a 

paradox involving the interchange of the roles of cause and 

effect, according to one’s point of view (see the discussion of 

causality near the end of Chapter 4). 

One particular consequence of the physical speed limit 

equal to c is that the classical concept of an ideal rigid body finds 

no place in special relativity. (And strictly speaking, it cannot 

be justified in classical mechanics either.) For by a rigid body we 

mean an object along which physical information can be trans¬ 

mitted in an arbitrarily short time, so that the object is set in 

motion instantaneously, as a single unit, when a force is applied 

to any point in it. For any ordinary box the information that 

one end has been struck is transmitted as an elastic wave, which 

we know is many orders of magnitude slower than a light signal. 

Thus the Einstein box argument in its original form cannot be 

maintained. At the receiving end of the box, the first intimation 

that anything had happened at the other end would be the 

arrival of the radiation itself. We can, however, rehabilitate the 

argument as follows. 

Ignore completely any connection between the ends of the 

box, and regard it as two separate masses, mi and m2 (Fig. 1-6). 

Just suppose that one end, of initial mass mx, emits energy E at 

1 = 0 and suffers a mass change to m /. It acquires a velocity 

Vi given by 
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m 

v, Just after 
emission 

v. Just after 
absorption 

Fig. 1-6 “Einstein's box 

unhinged." The recoil 

processes in two unconnected 

masses in consequence of a 

burst of radiant energy 

emitted from one (mi) and 

absorbed in the other (m2). 

If mi were originally at x = 0, its position at any later time is 

thus given by 

*i(0 = ~ ~tz t (1-30) 
tn 1 c 

When the energy arrives at m2 (at t = L/c) it causes a recoil 

and a change of mass so that we have, for the position of m2, 

*2(0 = L + ^rO-L/c) (1-31) 
m2c 

Let the total mass be M, and let the position of the center of 

mass be x before the radiation was emitted from m { and 3c' after 

it was absorbed in m2. Then 

Mx = mi • 0 + m2 • L 

and 

Mx’ = ( —r-1) + '”2'IL + —%- (t - L/c) 1 
\tn\ c ) [ m2 c J 

i.e., 

Mx' = — —t + m2'L + — / — ~L 
c c cl 

Hence, if 3c' = 3c, 
£ 

Amf = m2' — m2 = — = —Ami (1-34) 
c2 

Thus the principle of inertia of energy finds a sounder theoretical 

basis, but by this stage we have seen its real vindication in the 

experimentally observed behavior of particles. 

d-32) 

(1-33) 

SOME COMMENTS 

In this chapter we have presented evidence to show that the 

behavior of particles at very high speed simply does not conform 

to Newtonian dynamics. By analyzing this behavior, and by 
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following Einstein in the assumption that the center of mass of 

an isolated system does not spontaneously shift, we have de¬ 

veloped some relations (which appear experimentally to be valid 

for all attainable speeds) connecting energy, momentum, and 

mass. This has allowed us to arrive rather quickly at some 

important dynamical results. On the other hand, it is clear that 

the arguments we have used involve a good deal of conjecture; 

they are suggestive but by no means irresistible. Furthermore, 

one may well ask what all this has to do with the things one 

normally thinks of when relativity is mentioned—such things as 

the Lorentz contraction, frames of reference, space-time, the 

Michelson-Morley experiment. The answer is that the connection 

is very, very close. But apart from one small hint in our discussion 

of the results of the ultimate-speed experiment, we have so far 

not tried to deal with these very fundamental aspects of rela¬ 

tivity. There is a good reason for that; each of the experiments 

that we cited was conducted within a single frame of reference— 

the experimenter’s laboratory. But the concepts of distance, time, 

and velocity were involved at every turn; without them it is 

impossible to formulate or discuss dynamics. 

It was in the attempt to explain optical phenomena that the 

need for some drastic revision of our ideas about space and time 

finally became overwhelming. The development of this problem, 

culminating in the Michelson-Morley experiment, is the subject 

of Chapter 2. And then we shall see how Einstein, through his 

insistence on a fundamental reexamination of the bases of dy¬ 

namical measurement, made it possible to fit everything together 

within a single dynamical scheme. The same concepts of space 

and time are found to be appropriate to the facts of optics and 

electromagnetism and to the non-Newtonian dynamical behavior 

that we have been discussing in this chapter. Our program, then, 

will be to describe the predicament engendered by the facts of 

optics, to show how Einstein eliminated the apparent conflict 

between optics and Newtonian mechanics, and then to illustrate 

some of the applications of Einstein’s formulation of the prin¬ 

ciple of relativity. 

PROBLEMS 

1-1 A burst of 1014 electrons accelerated to an energy of 15 MeV per 
electron is stopped in a copper target block of mass 100 g. If the block 
is thermally insulated, what is its temperature rise? The specific heat 
of copper is 0.09 cal/g-°K. 
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1-2 The intensity of the sun’s radiation just outside the earth’s atmo¬ 
sphere is approximately 8 X 104 joules/m2min. 

(a) Approximately what force does this radiation exert on the 
Echo II reflecting satellite balloon? Echo II is a spherical shell of 
radius 20.4 m, Its skin consists of a layer of Mylar plastic, 9 X 10~ 6 m 
thick, between two layers of aluminum, each 4.5 X 10-6 m thick. 
The density of Mylar is 103 kg/m3; of aluminum 2.7 X 103 kg/m3. 

(b) Compare this force with the sun’s gravitational force on the 
balloon. 

1-3 (a) Radiant energy from the sun is received at the earth at the 
rate of about 2 cal/cm2 • min on a surface perpendicular to the sun’s 
rays. What total force would be exerted on the whole earth by solar 
radiation if it were all absorbed? How does this compare with the 
sun’s gravitational force on the earth ? 

(b) What radius would a particle of dust in space have to have 
to be in equilibrium under the combined effects of the sun’s gravita¬ 
tional attraction and radiational repulsion ? 

Fiber- 

4 cm 

Spot 

-10 cm- 

1-4 A rectangular vane of aluminum foil, 10 cm long and of total 
mass 100 mg, hangs vertically in vacuum on a thin fiber (see the figure). 
The period of torsional oscillation is 40 sec. What is the static de¬ 
flection of each end of the vane if 1 watt of radiant energy falls on a 
spot 4 cm off center? Assume that 60% of the radiation is reflected. 
The moment of inertia, about an axis through its center, of a rod of 
mass M and length L is ML2/12. 

1-5 It has been said that a fully opened umbrella catches about enough 
radiant energy per second on a clear day to run a washing machine. 
Use this statement as a basis for calculating the approximate rate of 
loss of mass by the sun. 

1-6 If all the light used in New York City in 1 hour of the evening 
could be captured and put in a box, approximately how much heavier 
would the box become? 

1-7 A battery connected to a flashlight bulb is exactly counterpoised 
on the pan of a balance. The battery maintains an average current of 
0.1 amp at an average voltage of 1 volt for 3 hours. Assuming all this 
energy is radiated away, what must be the order of magnitude of the 
sensitivity A M/M of the balance if a deflection is to be detected? 

1-8 (a) Sir Arthur Eddington once remarked that if 1 g of electrons 
could be confined in a sphere of 10 cm radius, the mass associated 
with their electric potential energy would be of the order of 10 million 
tons. Check this assertion for yourself, assuming that the electrons 
form a ball of charge of uniform density. (The electrostatic potential 
energy of a sphere of charge q and radius r is 3kq2/5r, where q is the 
charge in coulombs, r the radius in meters, and k—the constant in 
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the inverse-square law F = kqxqz/r2—is equal to 9 X 109 newton- 

m2/coulomb2.) 

(b) The calculation in (a) may sound pretty outlandish. But now 

calculate the mass of all the electrons in a sphere of water of 10 cm 

radius. If it were not for the positively charged nuclei, we should be 

faced with almost exactly such a situation as Eddington describes. 

1-9 An eccentric billionaire decides to sterilize his 10f,-liter swimming 

pool by boiling the water in it. For heating purposes he uses the 

fusion reaction 

JH + 3H —* 4He -+- radiant energy 

Assuming the heating system is 20% efficient, how much does he pay 

for the tritium (3H) to raise the pool temperature from 20 to 100°C? 

It takes 4.2 joules to raise 1 g of water through 1°C. Tritium costs 

about $5 per cm3 of gas at STP. 

Atomic masses: 1H 1.0081 amu 

3H 3.0170 amu 

4He 4.0039 amu 

shell 

1-10 A spherical nuclear reactor of mass 103° kg in interstellar space 

is completely surrounded by a thin, nonrigid spherical shell of matter 

with a mass of 1026 kg (see the figure). The reactor loses 1010 kg/sec 

of its mass by the emission of electromagnetic radiation. (If this 

sounds like the description of a star, it’s no accident!) This radiation 

is completely absorbed by the surrounding shell of matter. What 

must be the radius of the spherical shell if the repulsion exerted on it 

by the radiation is just great enough to balance the gravitational 

attraction exerted on it by the reactor? (Consider the forces exerted 

on a small portion of the shell.) 

1-11 (a) The heat of formation of CO from C and O is about 

20 kcal/mole. If this heat is allowed to escape, by what fraction is the 

carbon monoxide lighter than its parent elements? 

(b) If the nuclei of the abundant isotopes of C and O (12C and 

160) could be combined to produce 28Si in its normal state, with the 

escape of all surplus energy, by what fraction would the silicon nucleus 

be lighter than its parent nuclei ? 

(c) Process (b) would not be very probable unless the reacting 

nuclei could be forced to within about 10~14 m against their electric 

repulsion. What kind of temperature would be needed in a mixture 

of C and O before this became at all likely? In the Coulomb force law 

(F — kqiq^/r2) the value of A: is 9 X 10° newton-m2/coulomb2. 

1-12 (a) A body of mass m i + Am is connected to a body of mass 

m2 — Am by a spring of spring constant k and negligible mass (see 
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Ch^HZI 
m1 + Am m2 — Am 

the figure). The system is at rest on a frictionless table. A burst of 

radiation is emitted by the first body and absorbed by the second, 

changing the masses to mi and m2 and setting the system into oscil¬ 

lations. If the time of transit of the radiation is negligibly small com¬ 

pared to the period of oscillation, show that the maximum extension 

of the spring is given by 

(b) Consider qualitatively what would happen if the spring could 

be made stronger and stronger, without limit. 

1-13 The discussion of Einstein’s box in the text assumes that the 

transit time of the radiant energy is L/c (where L is the length of the 

box), a result obtained by neglecting the distance of recoil of the box. 

The text also ignores the decrease in the mass of the box resulting 

from the emission of the radiant energy. Show that if both these 

features are properly taken into account, the result m = E/c2 is still 

obtained. 

1-14 Having obtained the relation m = E/c2 for the inertial mass of 

radiant energy, Einstein in 1911 speculated whether this same value of 

m, substituted in the universal gravitation formula, would describe the 

deflection by the sun of light rays from a distant star, thereby causing 

the apparent direction of the star to be slightly displaced. (A German 

astronomer, J. Soldner, treating light simply as Newtonian particles 

traveling at speed c, had—unknown to Einstein—carried out es¬ 

sentially this same calculation back in 1801!) 

Calculate the deflection a for a photon that just grazes the edge 

of the sun, by assuming that to a first approximation it shoots by along 

a straight-line path always traveling at speed c, but that the component 

of the gravitational force perpendicular to the path (F cos 6), in- 

a 

Actual situation 

32 Departures from Newtonian dynamics 



tegrated over the complete path, ends up by giving the photon a trans¬ 

verse momentum component 

Ap = /Fcos 6dt 

so that the deflection a is equal toAp/p, where p = E/c (see the figure). 

Let x be the distance measured along the path. Taking the origin of x 

at the point where the ray grazes the sun, the limits of x are ± °o and 

we also have dt = dx/c, and CP2 = x2 + R2. 

The result is a = 2GM/c2R. After verifying this formula, put in 

numbers to obtain a numerical value of a in seconds of arc. (N.B.: It 

is believed that this answer is wrong in principle. Einstein’s general 

theory of relativity brings in a further factor of 2 in the theoretical 

deflection.) 

1-15 A particle is given a kinetic energy equal to n times its rest energy 

/woe2. What are 

(a) Its speed ? 

(b) Its momentum ? 

1-16 (a) Through what voltage would an electron have to be ac¬ 

celerated from rest so as to increase its mass by 0.4% ? 

(b) What would be its speed under these conditions? 

1-17 A proton is accelerated through the equivalent of 500 million 

volts by a synchrotron. 

(a) What is its mass, expressed as a multiple of the rest mass ? 

(b) What fraction is its speed of the speed of light ? 

1-18 What is the velocity of the center of mass of a system consisting 

of a photon of energy hv and a stationary atom of rest mass/wo? 

How would your answer change if the atom were in an excited state? 

Does this seem reasonable nonrelativistically ? 

1-19 (a) The ratio v/c is very often denoted by the single symbol /). 

Show that if /3 <3C 1, the following are valid through terms of order /32: 

E = moc2 + movz/2 - moc2(l + $2/2) 

K = m0v2/2 = /w0c2(32/2 

pc = move = /woc2(3 

7 = 1+ 02/2 

(b) Show that if 7 = e_1 » 1, the following are valid through 

terms of order t2: 

& = 1 - t2/2 

E = e~1moc2 

K/E = 1 - e 

pc/E = 1 - e2/2 

K/pc = 1 - € + e2/2 
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1-20 (a) The refractive index of air for visible light is about 1.000277. 

What would be the kinetic energy of an electron whose speed through 

an evacuated tube would be sufficient to keep it neck-and-neck with a 

light signal traveling through the air? 

(b) What force would a stream of such electrons, equivalent to a 

current of 16 mA, exert on a block of material in which they were 

stopped? 

1-21 (a) What fractional error does one make in using \Mv2 for the 

kinetic energy of a body if its speed is 

(1) 3 m/sec 

(2) 300 m/sec (the speed of sound in air) 

(3) 104 m/sec (the speed a body needs to escape from the 

earth) 

(4) 0.1c 

(5) 0.9c 

(b) If the experimental error in a measurement of v is 1% (ap¬ 

proximately), how large must v be before relativistic corrections be¬ 

come significant? 

1-22 An electron moving with a speed 0.5c in the x direction enters 

a region of space in which there is a uniform electric field in the y 

direction. Show that the x component of the velocity of the particle 

must decrease. (After E. M. Purcell, Electricity and Magnetism, 

McGraw-Hill, New York, 1963.) 

1-23 A particle of rest mass m, charge q, and initial velocity vo enters 

a region of space containing a uniform electric field £ perpendicular 

to vo. Find the subsequent trajectory of the particle, and show that 

the path is a parabola as long as the speed of the particle is much 

less than c. (After H. Goldstein, Classical Mechanics, Addison-Wesley, 

Reading, Mass., 1950.) 

1-24 A uniform rod of mass M and length 2L spins with angular 

frequency co « c/L about its center. Its angular momentum and 

kinetic energy are given by 

/ = 

K = 

ML' 

3 

ML 

L"( 
2,2 

w L 

~c2~ 

2,2 

What are the values of A and B2 

1-25 The “classical radius” of the electron, ro, is a combination 

of physical constants, numerically equal to 2.818 X 10“15 m. The 

electron is also known to have an intrinsic angular momentum, or 

spin, equal to h/2 = 5.272 X 10-35 joule-sec. If the electron is 
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assumed to be a uniform sphere of radius r0 spinning with angular 

frequency co, find the numerical value of co. (Use a nonrelativistic 

analysis.) Do you think this is a reasonable model? Why not? The 

moment of inertia of a uniform sphere is 2MR2/5. 

1-26 Calculate the relativistic increase of mass (in %) associated 

with the kinetic energy of an electron moving in the first Bohr orbit of 

(a) hydrogen (Z = 1), (b) uranium (Z = 92). The orbit is defined 

by F = mv2/r and by mvr = h = 1.05 X 10-34 joule-sec. The 

force F is given by F = kqxq^lr2, where qi = Ze, q2 = e = 1.6 X 

10“19 coulomb, and k = 9 X 10° newton m2/coulomb2. 
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Is there any point to which you would wish to draw my 

attention ? 

To the curious incident of the dog in the night-time. 

The dog did nothing in the night-time. 

That was the curious incident, remarked Sherlock 

Holmes. 

THE MEMOIRS OF SHERLOCK HOLMES (1893) 

The interpretation of these results is that there is no 

displacement of the interference bands. 

A. A. MICHELSON (1881) 



2 

Perplexities in 

the propagation 

of light 

the evidence that we assembled in Chapter 1 leaves us in no 

doubt that a velocity equal to the velocity of light in vacuum has 

a deep significance in physics. Yet when we try to couple this 

fact with the classical dynamical scheme we seem to run into 

serious trouble. For at first glance a universal velocity is a con¬ 

tradiction in terms. We know that the velocity of a given motion 

has different measures in different frames of reference. How, 

then, is it possible to incorporate a unique velocity into the equa¬ 

tions of dynamics? What justification do we have for speaking 

of the velocity of light, without reference to any particular frame 

of observation? (When we say, for example, that the speed of 

sound has a certain value, we know that this has meaning only 

as a statement of the speed of a wave with respect to the medium 

itself.) As we shall see in Chapter 3, it was Einstein’s clear reso¬ 

lution of these questions, where others had made only tentative 

or partial attempts, that marked him as the true creator of special 

relativity. And a key factor in his success was his power to 

recognize (in the kind of way that Conan Doyle portrays Holmes 

as recognizing) the full significance of the things that did not 

happen. The most famous of all such phenomena is embodied 

in the results of what is universally known as the Michelson- 
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Morley experiment, but many other optical phenomena, some of 

them known long before the Michelson-Morley experiment was 

performed, contained clues to the solution of the problem. And 

in this chapter we shall review some of the important evidence 

relating to the propagation of light, both in empty space and in 

transparent material media. 

THE NATURE OF LIGHT 

The propagation of light involves the transport of energy away 

from a source. The simplest picture of this process is in terms 

of a stream of particles emitted from the source; Pythagoras, 

back in the 6th century B.c., proposed this mechanism. It ac¬ 

counts, very directly, for the propagation of light in straight lines 

(as evidenced by the sharpness of shadows) and for the fact that 

light can travel with complete ease through a vacuum. In 1667 

there appeared the first clear exposition of a different theory— 

that light is a vibration communicated through a medium of 

some kind. This was propounded by Robert Hooke in his famous 

book Micrographia. At about this time were observed some of 

the phenomena that could not easily be related to a particle 

theory of light—the brilliant colors of thin air films between glass 

surfaces, and the encroachment of light upon the region of the 

geometrical shadow. Huygens, in his Treatise on Light,' devel¬ 

oped the wave theory explicitly, and showed how it could account 

for reflection and refraction. 

The particle theory and the wave theory have been the only 

clearly defined models by which to describe light and its propaga¬ 

tion. For a long time—until the 20th century in fact—the two 

theories were taken to be mutually exclusive; it seemed obvious 

that acceptance of the one must imply rejection of the other. 

From the vantage point of today, we see that both photon and 

wave aspects of the behavior of light must be accepted—that the 

facts cannot all be forced into the mold of one or other of the 

two theories. We have learned also (thanks largely to Einstein) 

that we should focus on the bare facts of observation, and should 

not, through our adherence to a particular theory, read more 

into them than is there. To be specific, the wave properties of 

light are undeniable—diffraction, interference, polarization, etc. 

JC. Huygens, Treatise on Light (written in 1678, published in 1690), una¬ 

bridged republication of the original English edition of 1912 translated and 

introduced by S. P. Thompson, Dover, New York. 
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But the waves of ordinary experience require a medium. What 

more natural, therefore, than to build up a detailed specification 

of the medium that carries waves of light, and then to seek to 

detect it? Yet it was a quest that led only to frustration. Einstein 

showed that the search for the medium—the luminiferous ether— 

was sterile and unnecessary. The ether was a red herring—some¬ 

thing that diverted physicists into following a false scent. Per¬ 

haps in this present discussion we should not introduce the ether 

at all, knowing that we are going to bury it again in the end. Yet 

one cannot fully appreciate the emergence of special relativity 

without some feeling for the importance and the appearance of 

reality that the ether once enjoyed. In the next section, therefore, 

we shall briefly discuss this background. 

THE LUMINIFEROUS ETHER 

The story of 19th-century physics was, in large part, the story of 

the triumph of the wave theory of light. At the beginning of the 

century (1801-1804) Thomas Young made his quantitative 

studies of interference phenomena. Beginning in 1818, Fresnel 

published calculations that were able to account in detail for the 

facts of interference, diffraction, and polarization. Since, as 

Huygens had shown, a wave theory was as competent as a par¬ 

ticle theory to describe the ray properties of light—rectilinear 

propagation and the laws of reflection and refraction—the pic¬ 

ture of light as a vibration in a medium, analogous to transverse 

waves on a string, seemed unassailable. But what could one say 

about the properties of the medium—which came to be called 

the luminiferous ether—in which these vibrations were presumed 

to take place? 

Until about 1850 the propagation of light was envisaged in 

purely mechanical terms. This, however, posed very considerable 

difficulties, because it was hard to understand how the speed of 

light could be so very great. (The first quantitative measurement 

was due to the Danish astronomer Roemer in 1675. He noted 

systematic variations in the times, as recorded by clocks on earth, 

at which the moons of Jupiter moved into the planet’s shadow, 

and was astute enough to recognize that these variations were 

linked to the position of the earth in its orbit and to the as¬ 

sociated transit time of the light over a variable distance.) A 

wave speed of more than a hundred thousand miles per second 
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was many orders of magnitude greater than the speed of any other 

mechanical disturbance, and demanded a medium which, al¬ 

though so tenuous that the planets could travel through it year 

after year with no detectable loss of speed, must nevertheless 

develop very strong restoring forces when displaced from equi¬ 

librium—since the speed of propagation of a wave depends on 

this restorative property of the medium. It was unsatisfying, too, 

that the only clue to the properties of the medium was the mea¬ 

sured value of c itself; nothing was known a priori. 

The situation was transformed when James Clerk Maxwell, 

in 1861, produced his electromagnetic theory of light. It now 

became possible to predict the numerical value of the speed of 

light for any given medium, in terms of measurable electric and 

magnetic properties of the medium. There was no longer such 

a gulf between ether and ordinary matter, although the in¬ 

tangibility of the ether might still seem mysterious. The wave 

theory seemed to have achieved its ultimate justification, and the 

ether a reality that could not be gainsaid. 

Granted the existence of the ether, it was of course quite 

clear what was meant by “the speed of light.” Any wave has a 

definite velocity with respect to the medium through which it 

moves. The magnitude of this velocity may be a function of 

wavelength (the phenomenon of dispersion) but is otherwise 

uniquely defined, at least for an isotropic medium (i.e., one con¬ 

taining no preferred directions). In particular, the speed of light 

through a medium should be quite independent of any motion 

of the source, in direct contrast to a particle-emission mechanism, 

in which one would expect the speed relative to the source to be 

the unique quantity. Acceptance of the wave theory did not wait 

upon an experimental proof that the measured value of c is in¬ 

deed independent of the source velocity. If this had been known 

to Huygens, he would no doubt have used it as one more proof 

that a particle model of light was inadmissible. In fact, however, 

the wave theory appeared to be adequately supported by other 

lines of evidence, and the effect of source motion was not ex¬ 

plored until the wave theory, in its turn, had run into severe 

difficulties. In Chapters 3 and 5 we shall have more to say about 

experiments on radiation from moving sources; for the present 

we shall merely state the result—that the velocity of a source of 

light is not communicated to the radiation it emits. 

Let us, then, put ourselves in the position of a physicist of, 

say, 1900, and look at some striking optical phenomena from the 

standpoint of a wave theory. 
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STELLAR ABERRATION 

In 1725 the British astronomer James Bradley tried to measure 

the distances of some stars by looking for an apparent change in 

their positions as the earth moved around the sun. He hoped 

to use the diameter of the earth’s orbit as a base line, and to 

determine stellar distances in essentially the same way as a sur¬ 

veyor measures distances by triangulation. He did observe an 

effect, but he discovered that it was not parallax; it depended 

not on the earth’s position, but on its motion at a given point in 

the orbit. (The true parallax effect is unobservably small for 

most stars.) 

Consider Fig. 2-1, which depicts the orbit of the earth 

around the sun, and a star viewed from four positions of the 

earth, at 3-month intervals. The true altitude of the star with 

respect to the plane of the earth’s orbit (the ecliptic) is the angle 

60. Because of the earth’s changes of position, one would expect 

the altitude to be greatest when the earth is at position 2 and 

Fig. 2-1 Stellar 

aberration, (a) A 

distant star is viewed 

from the succession 

of positions 1-2-3-4 

as the earth moves 

around the sun. 

(,b) In a coordinate 

system attached to 

the earth (but with 

the direction of the 

axes fixed in space), 

the apparent position 

of the star follows 

the elliptical path 

a-b-c-d. The effect 

depends on the 

changes in the 

direction of the 

earth’s velocity, not 

on the changes in its 

position as such. 
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Fig. 2-2 Basis of stellar aberration, (a) A stationary 

telescope aligned on a star. (b) A mooing telescope 

aligned on the same star. 

least when it is at position 4. Instead, Bradley found that the 

altitude was greatest at position 3 and least at position 1. 

The phenomenon can be understood in terms of Fig. 2-2. 

A telescope on a stationary earth (a) would have to be pointed 

at the true altitude 60 in order that the rays of light from the star 

should travel along the axis of the instrument and form an image 

at the center of the field of view. But on a moving earth (b) the 

telescope would have to be tilted at a slightly different angle, 6. 

The difference of angles is the aberration, a. We can observe a 

comparable phenomenon when it rains. If raindrops are falling 

vertically at speed w, but we are in a vehicle moving at speed v, 

we see the drops moving along straight lines inclined to the 

vertical at an angle tan-1 (v/w). 

The aberration effect would never be detectable if the earth 

moved always with the same velocity, but the changes in the di¬ 

rection of motion during the year lead to a systematic change in 

the apparent position. This can be analyzed quantitatively with 

the help of Fig. 2-1. At positions 1 and 3 the earth’s velocity 

vector and the line from sun to star make an angle d0 with one 

another. At positions 2 and 4 the earth’s velocity is at right angles 

to the line from sun to star; the aberration angle has its greatest 

possible values (±o/c) at these positions. At positions 1 and 3 we 

have a situation like that depicted in Fig. 2-2, in which the 

aberration angle is only of magnitude usin d0/c. Thus in the 

course of a year the star appears to describe an elliptical path 

which has a major axis (measured as an angle 2/3) equal to 2v/c 

and a minor axis of 2/3 sin 60■ The length of the major axis 

should be the same for all stars; the length of the minor axis 

depends on the altitude 90 of a star with respect to the plane of 

the earth’s orbit. 

What Bradley observed corresponded exactly to the above 

description. Figure 2-3 is a graph of some of his observations on 

the star 7 Draconis; it shows how the apparent position of the 

star varied in the north-south direction over a 12-month period.1 

‘Data taken from J. Bradley, Phil. Trans. Roy. Soc., 35, 637 (1729). For an 

interesting account of Bradley’s work, with many details, see A. Stewart, 

“The Discovery of Stellar Aberration,” Sci. Am. 210(3), 100 (1964). 
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The east-west component of the aberration was not recorded. 

(You should consider the practical difficulties of measuring this 

component.) Thus Bradley’s data span the minor axis of the 
aberration path. 

Now the orbital speed of the earth is 30 km/sec, so that the 

value of 2v/c is 2 X 10-4 rad, or about 41 seconds of arc. A 

typical aberration path would resemble the outline of a football 

viewed from a distance of about 1 mile. The data shown in 

Fig. 2-3 span the minor axis of an aberration path for which 

d0 = 75°, giving a calculated variation of 39.6" between maxi¬ 

mum and minimum altitudes, with a sinusoidal variation (why?) 

between these extremes. The observed range of variation cor¬ 

responds extremely closely to this theoretical value. Actually, 

Bradley himself could not make a quantitative theoretical check 

of his result, because the speed of light was not well enough 

known. Instead, being sure that the basic interpretation of the 

phenomenon was correct, he used the observed aberration angles 

to obtain an improved value of c, the earth’s orbital speed being 

at that time quite well known. 

When we come to analyze the aberration phenomenon in 

terms of a theory of light, it is clear that a particle model provides 

a very ready explanation; it is just like the falling-rain analogy. 

However, one can also account for the effect in terms of waves 

Fig. 2-3 Bradley's data on the north-south component 

of the aberration of y-Draconis (.1727-1728). 
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traveling through the ether, provided the ether remains completely 

undisturbed by the earth’s motion. If, on the other hand, the 

ether near the earth were carried along with it, the aberration 

would not take place.1 The notion of an ether completely un¬ 

disturbed by the passage of the earth must have seemed a rather 

strained one to many physicists, but with the wave theory stand¬ 

ing supreme it appeared unavoidable. And then it was natural 

to ask: Can one make any measurements that will disclose the 

magnitude of the velocity of the earth through the ether? We 

shall next describe some experiments bearing on this question. 

A MODIFIED ABERRATION EXPERIMENT 

Suppose that a telescope has been aimed at a star whose true 

direction is at 90° to the plane of the earth’s orbit. Let the un¬ 

known aberration angle be a [Fig. 2-4(a)] and let the unknown 

speed of the earth through the ether be v. Now imagine that the 

whole tube of the telescope is filled with water, of refractive index 

n. Since light travels more slowly in water than in air or vacuum, 

the time for the light to travel down the length of the telescope 

tube will be lengthened—by the factor n. One might expect, 

therefore, that to keep the star’s image in the center of the field 

of view one would have to tilt the telescope further, to some new 

aberration angle /?, and that the amount of this adjustment could 

be used to find the speed v. At first glance one might think that 

the angle (3 would be just nv/c, but in analyzing this experiment 

one must remember that, because the objective lens of the 

telescope now has air on one side and water on the other, the 

light rays entering the telescope are bent toward the axis of the 

instrument, as indicated in Fig. 2-4(b). Inside the telescope we 

would expect the rays to travel at an angle 8 to the axis such that 

sin /3 /3 
n — ——- « — 

sin 8 8 

Since the light is traveling downward with speed c/n, and the 

telescope is moving sideways at speed v, the condition for center¬ 

ing the star’s image in the telescope is 

‘Actually, this conclusion is not inescapable, but one must postulate quite 

outlandish conditions to have “convected ether” and aberration. 
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Fig. 2-4 Principle of Airy's 

experiment designed to reveal 

motion of the earth through 

the ether by sighting on a star 

with (a) a normal telescope; 

(b) the same telescope filled 

with water. 

(Remember that the angles are grossly exaggerated in Fig. 2-4.) 

Now we do not know the true values of a, ft, and 8, but we can 

surely measure the change of telescope direction, and we have 

2 
a _ s n v t> 
/3 ss « — a ~ - 

c c 

Therefore, 

P - a « («2 - 1 )v/c (2-2) 

Everything is directly measurable except v, the value of which we 

should therefore be able to discover. This very experiment was 

carried out by Sir George Airy in 1871. The result? There was 

absolutely no change in the apparent position of the star! 

How can we explain this null result? As a matter of fact, it 

had been predicted by the brilliant J. A. Fresnel, who had sug¬ 

gested this experiment many years earlier. Fresnel’s expectations 

were based, however, not on the fundamental impossibility of 

detecting absolute motion, but on the assumption of a partial 

drag of the light by the medium. He had postulated this in 1818, 

after his fellow-countryman Arago had found that the refraction 

of starlight through glass appeared to take place just as though 

the earth were at rest in the ether. 

Sir George Airy’s experiment can be easily analyzed in these 

terms. For suppose that the water drags the light sideways with 

a fraction/ of its own velocity v. The experiment has shown that 

the angle fi is equal to the original aberration angle a (= v/c) 

and hence that the angle 8 is equal to a/n. Let the length of the 

telescope be /; then the time t for the light to pass down it when 
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water-filled is nl/c. In time t the telescope moves through the 

distance vt; if the light is to emerge at the center of the eyepiece, 

its sideways displacement must be equal to this. But, as measured 

from the position of the eyepiece when the light enters the top 

of the telescope, the displacement of the light is the sum of 15, 

due to refraction, and fvt, due to dragging by the water. Hence 

we have 

vt = 18 -j- fvt 

But 

/ = ct/n and 5 = a/n = v/nc 

Therefore, 

ct v 
vt =-- + fvt 

n nc 

whence 

/ = 1 - l/«2 (2-3) 

The quantity /is known as Fresnel’s drag coefficient. 

It may seem curious indeed that nature should provide a 

drag coefficient of just such a size that Airy’s experiment, and 

others like it, should yield just the same result as if the earth 

were motionless with respect to the ether. Is there some way of 

exhibiting this drag as a positive effect, rather than as a null 

phenomenon? H. L. Fizeau had answered this in the affirmative 

in a famous experiment he performed in 1851. 

FIZEAU’S MEASUREMENT OF THE DRAG COEFFICIENT 

Fizeau set up the apparatus shown diagrammatically in Fig. 2-5. 

A beam of light from a source S falls on an inclined glass plate P 

that has a semitransparent metal coating such that the beam is 

split into two parts. One part travels straight on until it strikes 

a mirror Afx. The other part is reflected through 90° and strikes 

M3. With a third mirror M2 in place, the two beams travel 

around the same rectangular path but in opposite directions. 

When they arrive back at P, part of the first beam is reflected 

and part of the second is transmitted, and the light thus emerging 

from the system enters a telescope T. 

This arrangement constitutes a type of optical interferom- 
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Fig. 2-5 Schematic 

diagram of Fizeau's 

“ether-drag" 

apparatus. 

Water in 
v 

St- 

eter. If monochromatic or nearly monochromatic light is used, 

interference fringes are seen when one looks through the telescope. 

A particular fringe represents a particular optical path difference 

between the two interfering beams. (By optical path we mean the 

distance in vacuum equivalent to any actual path. A distance d 

through a medium of refractive index n represents an optical 

path nd; it is this that defines the number of wavelengths of the 

light that can be fitted into the distance.) The view through the 

telescope is like that shown in Fig. 2-6. 

To provide a dragging effect, water is made to flow through 

two tubes with flat glass end plates as shown, so that one beam 

of light always travels with the water and the other beam always 

against it. Outside the water tubes the conditions are the same 

for both beams; thus to compute the optical path difference we 

need only consider what goes on inside the tubes. We can cal¬ 

culate this difference in terms of the difference of times for the 

two beams. If each tube is of length / and the speed of the water 

is v (with drag coefficient f), we have 

At 
21_21 

(c/n) - fv (c/n) + fv 

which gives 

At 
An2 fcl 

C2 
(2-4) 

47 Fizeau’s measurement of the drag coefficient 



Fig. 2-6 Inter¬ 

ference fringes in 

apparatus of the 

Fizeau type. (Photo 

courtesy of G. C. 

Babcock, Michelson 

Laboratory China 

Lake, Calif.) 

This implies an optical path difference c At. The change of 

optical path, expressed as a multiple (5) of the wavelength X of 

the light, is thus given by c At/\: 

4nfvl 

\c 
(2-5) 

In Fizeau’s experiment the approximate values were 

/ = 1.5 m 

v = 7 m/sec 

X = 5.3 X 10~7 m 

n = 1.33 (refractive index of water) 

5 = 0.23 fringe 

Substituting these values in Eq. (2-5) gives the observed value 

of/: 

/ob8 « 0.48 

The value of/ calculated from Eq. (2-3) is 

/calc = 0.43 

This could be taken as confirmation of the drag hypothesis. The 

experiment was, however, repeated with greater precision by 

Michelson and Morley in 1886, and still later became the subject 

of a series of beautiful investigations by P. Zeeman and his 

associates in Holland during the years 1914-1922. 

The result of Fizeau’s experiment could be taken as rein¬ 

forcing the observations on stellar aberration. Both could be 

interpreted by supposing that a moving object does not com¬ 

municate any of its motion to the ether, either outside or inside 

it. Inside a moving transparent material (according to this view) 

the light is carried partly by the material and partly by the ether 

that permeates it. Since the ether remains at rest, the light be- 
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haves as if only a fraction of the velocity of the material were 

added to the light. The question therefore remained: Could the 

motion of the earth through the ether somehow be detected? 

PRELUDE TO THE MICHELSON-MORLEY EXPERIMENT 

In 1879 Clerk Maxwell, in England, wrote an acknowledgment 

of some astronomical tables he had received from D. P. Todd of 

the U.S. Nautical Almanac Office in Washington. These tables 

contained many observations of the planet Jupiter. Maxwell, in 

his letter, asked about the possibility of measuring the velocity 

of the solar system through the ether by observing the eclipses 

of Jupiter’s moons. (We have mentioned earlier how Roemer 

was able to measure the speed of light by studying the time lag 

in detecting these eclipses.) 

The essence of Maxwell’s idea was very simple. Jupiter has 

a period of 12 terrestrial years, and so in half a terrestrial year, 

while the earth moves from A to B (Fig. 2-7), Jupiter does not 

travel very far in its orbit. Thus by observing the apparent times 

of eclipses with the earth successively at A and at B, we can infer 

the time taken for light to travel a distance equal to the diameter 

of the earth’s orbit. This was Roemer’s discovery, in fact. But 

if this time is measured when Jupiter is first at A', and then, 

6 years or so later, at B', we can hope to discover whether the 

whole solar system is moving through the luminiferous ether with 

Fig. 2-7 Orbits of 

earth, Jupiter, and one 

of Jupiter's moons. 

Intervals betweeen 

moon's eclipses be¬ 

hind Jupiter, as 

observed at earth, 

depend on relative 

positions and motions 

of earth and Jupiter. 

Jupiter 
• Earth * with moon 
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some speed v. For, if the diameter of the earth’s orbit is /, we 

would expect to have 

/ / 

and hence a time difference A/ given by 

At = t2 — 11 (2-6) 

whereto = 16 min approximately. If we could detect At = 1 sec, 
this would then correspond to v equal to about 150 km/sec. 

This is rather high compared with the known velocities of stars 

relative to the solar system (20km/sec is a typical figure), but 

it is not excessive. Unfortunately, however, the difficulty of 

establishing any such difference through measurements made 6 

years apart is great, and in fact the astronomical data available 

to Maxwell were not accurate enough for any such analysis, as 

Todd pointed out in his reply. 

Maxwell, in proposing the above method, pointed to the 

feature that it was a first-order experiment—the effect would be 

proportional to the first power of the ratio v/c. And in his letter 

to Todd, Maxwell remarked that this distinguished it from ter¬ 

restrial experiments on the speed of light, because these experi¬ 

ments necessarily used a beam of light that returned to its starting 

point. The time for any such round trip does in principle depend 

on the speed of the earth through the ether, but the effect is of 

the second order. Thus, if the length of the path (one way) is /, 

and if the earth’s motion happens to be along the direction of the 

path at speed v, the total time taken by the light would be given by 

= 1 + 1 = 2,c « — (\ + il\ 
1 C + V C — V C2 — V2 c \ c2) 

The change of time due to the motion is thus given by 

At 

2 2/ v 

c c2 
(2-7) 

Maxwell remarked that this effect would be undetectably 

small. If v were taken as the orbital speed of the earth, we should 

have v/c = 10 4, so that the fractional variation of flight time 

would be only 1 part in I08, which would surely be beyond the 

limits of observation. But Maxwell’s letter was read by A. A. 

Michelson, who in the previous year (1878) at the young age of 
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25 had carried out a superb measurement of the speed of light.1 

And Michelson did not accept without question the impossibility 

of detecting motion via Eq. (2-7). Instead, he began thinking 

about a method to achieve it. Two years later, in 1881, he had 

some results. The next section describes his experiment, the most 

famous of all attempts to detect our motion through absolute 

space as defined by the ether. 

THE MICHELSON-MORLEY EXPERIMENT 

Michelson, who became the first American to win a Nobel prize 

in science (it was awarded to him in 1907), invented a new in¬ 

strument of unprecedented sensitivity to look for the effect that 

Maxwell had discounted. The essential features of his apparatus, 
known universally as the Michelson interferometer, are shown in 

Fig. 2-8. Light from a source 5 falls on an inclined glass plate P 

that has a semitransparent metal coating on its front face. This 

splits the light into two parts. One part travels on through the 

plate and strikes a mirror Mt. It retraces its path to the point 

where the beam was first split, and a fraction of it is reflected 

back through the plate into a telescope T. A second light path 

is by reflection from the beam splitter to a mirror M2 and back. 

'Michelson, a young naval instructor, had just been transferred to the 

Nautical Almanac Office where Maxwell’s correspondent Todd worked. 

Fig. 2-8 Schematic 

arrangement of 

Michelson 

interferometer. 

= m2 

1 

J 
C-, U— J1 
Metallized^ 

/ 

l 

u 
Mx 
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The Michelson-Morley experiment 

(a) A sketch of the apparatus. (b) Plan view of the optical system, (c) Variation 

of fringe position during one rotation of the apparatus. [Diagrams (a), (b), 

and (c) are adapted from A. A. Michelson, Studies in Optics, Univ. Chicago, 

Phoenix Books, 1962.] 

The photograph shows fringes during two complete rotations of the apparatus 

in a later repeat of the experiment by G. Joos in 1930. (From Joos, Lehrbuch 

der Theoretischen Physik, Akademische Verlagsgesellschaft, Leipzig.) The 

table summarizes the results of various studies of the Michelson-Morley experi¬ 

ment. (5caic = Fringe shift according to Eg. (2-14), for v = 30km/sec.) 



1/8 x Theoretical 

Experimental 

(0 

TRIALS OF THE MICHELSON-MORLEY EXPERIMENT* 

Observer; year l, cm. $calc bobs (upper limit) Ratio 

Michelson; 1881 120 0.04 0.02 2 

Michelson and Morley; 1887 1100 0.40 0.01 40 

Morley and Miller; 1902-1904 3220 1.13 0.015 80 

Miller, 1921 3220 1.12 0.08 15 

Miller; 1923-1924 3220 1.12 0.03 40 

Miller (sunlight); 1924 3220 1.12 0.014 80 

Tomaschek (starlight); 1924 860 0.3 0.02 15 

Miller; 1925-1926 3200 1.12 0.08 13 

Kennedy; 1926 200 0.07 0.002 35 

Illingworth; 1927 200 0.07 0.0004 175 

Piccard and Stahel; 1927 280 0.13 0.006 20 

Michelson et al; 1929 2590 0.9 0.01 90 

Joos; 1930 2100 0.75 0.002 375 

*From a review by Shankland et al.. Rev. Mod. Phys., 27, 167 (1955). 



Fig. 2-9 Straight 

fringes formed by 

Michelson inter¬ 

ferometer. (Photo by 

Jon Roseitfe/d, 

Education Research 

Center, M.I.T.) 

A compensating plate C causes this beam to travel through the 

same thickness of glass as the first one (in the interests of optical 

symmetry) before it rejoins the first beam and passes with it into 

the telescope. If monochromatic light is used, interference 

fringes are seen when one looks through the telescope. 

If the plate P is inclined at 45° and the surfaces of the mirrors 

are almost but not quite at 90° to each other, one obtains fringes 

resembling those formed by a wedge of very small angle. By 

suitable adjustment of the mirrors these fringes can be made 

horizontal. The view through the telescope is then as indicated 

in Fig. 2-9. If the optical path lengths (PM x and PM2) giving 

rise to a particular fringe are l\ and /2, we have the condition 

2(11 - h) = m\ (2-8) 

where m is some integer. If /x or /2 is changed by X/2, e.g., by 

moving one of the mirrors, the pattern of Fig. 2-9 moves by one 

fringe interval over the telescope cross-hair XX'. 

Let us now imagine that Michelson’s whole apparatus is 

moving at speed v in the direction PMi, with respect to the 

inertial frame defined by the hypothesized ether. From the view¬ 

point of the laboratory, an “ether wind” is blowing past the 

apparatus (Fig. 2-10). The light traveling from P to M2 and 

back must be aimed into the wind at such an angle that the 

resultant velocity is along PM2- It would follow from the usual 

Galilean law of composition of velocities that the magnitude of 

the resultant velocity relative to the interferometer is (c2 — v2)112. 

The light traveling between P and M i would have (again relative 

to the interferometer) a resultant velocity c — v when traveling 

toward M j and a resultant velocity c + v on the return trip. 
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We can thus calculate the times taken for light to travel from P 

to the mirrors and back: 

n 

i.e.. 

h 

t2 

c — V C + V 

2hc = 2 h/c 

c2 — v2 (1 — u2/e2) 

2/a 2/2/c 

(C2 - v2)1/2 (1 _ V2/C2)1I2 

(2-9) 

(2-10) 

This defines a time difference A, which for v <JC c is given ap¬ 

proximately as follows: 

A = tl — t2 
2h 
c 

i.e.. 

2(/i - h) 2hS 
_ * _Q 

hv 
C3 

(2-11) 

If now the whole apparatus is turned through 90°, so that PM2 

now points along the direction of motion, we have a new time 

difference A': 

i.e., 

A' 
2(/i - h) hv 

C + C2 

2I2V 

C3 
(2-12) 

Fig. 2-10 Illus¬ 

trating principle of 

Michelson-Morley 

experiment in terms 

of “ether wind." 

t= 
l2 “Ether wind" 

I ' 

_L_n U 

\ 1. 
55 The Michelson-Morley experiment 



The change of time difference would lead to a shift of the inter¬ 

ference pattern by an amount corresponding to 5 fringes, where 

5 = c(A — A')/X, i.e.. 

_ (/i + h)o2 

Xc2 
(2-13) 

If 11 = 12 — /, we can express this result in the following form: 

. 2(v/c)2 

r (2-14) 

The values of X, /, and c are known, but what should we put for 

vl It seemed to Michelson and to everyone else concerned with 

the problem that one clearly identifiable contribution was the 

velocity of the earth in its orbit—about 30 km/sec. This, as we 

have seen, would give v/c ~ 10-4. We can put X ~ 6 X 10~7m, 

and in Michelson’s first apparatus 1= 1.2 m, so that X// * 

5 X 10~7. Putting these together gives 5 ~ 0.04 fringe. This is 

a small effect but in Michelson’s skilled hands would have been 

measurable. Yet to Michelson’s undoubted surprise and dis¬ 

appointment, when he set up his interferometer and rotated it 

through 360° there was no significant shift of the fringe pattern. 

His terse statement of this result, quoted from his first paper on 

the subject,1 is at the beginning of this chapter. He added the 

comment: “The result of the hypothesis of a stationary ether is 

thus shown to be incorrect.” 

The null result was so unexpected, and so hard to account 

for, that strenuous efforts were made, especially by the great 

Dutch physicist H. A. Lorentz, to reconcile it with other optical 

phenomena such as we have described in this chapter. Lorentz 

devised a theory according to which, without contradicting the 

stellar-aberration experiments, one might have a partial drag of 

the ether by the earth. A more precise repetition of Michelson’s 

experiment became desirable, and Lord Rayleigh wrote to 

Michelson urging him to do it. Thus it came about that Michel¬ 

son, now in collaboration with E. W. Morley, undertook a much 

more precise investigation, based upon optical paths about 10 

times longer than in the first experiment. This made the expected 

fringe shift about 0.4 fringe, but the observed effect was at most 

0.005 fringe. It is this refined version of the experiment, per¬ 

formed in 1887,2 that has long been regarded as one of the main 

‘A. A, Michelson, Am. J. Sci, 122, 120 (1881). 

2A. A. Michelson and E. W. Morley, Am. J. Sci., 134, 333 (1887). 
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experimental pillars of special relativity. See pages 52 and 53 

for a diagram of the Michelson-Morley apparatus and a sample 

of the results. 

CONCLUDING REMARKS 

The phenomena we have described in this chapter are such as to 

cause a strong sense of frustration in anyone who wishes to hold 

to the picture of light as waves in the ether. Every experiment 

designed to reveal our motion through this medium has the same 

result as though no motion existed or as though the medium it¬ 

self did not exist. The result of the Michelson-Morley experiment, 

like stellar aberration, is readily explained in terms of a ballistic 

model of light, in which the speed is uniquely defined with respect 

to the source, not with respect to a medium. It would be in 

perfect accord with what Galileo first recognized—that motions 

on a uniformly moving ship or other inertial reference frame do 

not, as observed within that frame, reveal any information about 

the velocity with which the whole system is translated. But in 

the view of most physicists at the end of the 19th century a 

particle model was not relevant; one had to seek the explanations 

in the context of what seemed to be clearly a problem in wave 

propagation.1 And looking at the evidence, one could see that 

the only observations which did not give null results were those 

in which well-defined relative velocities were involved. In stellar 

aberration it was the velocity of the earth at some point in its 

orbit relative to the velocity at some other point. In the Fizeau 

experiment it was the velocity of the flowing water relative to 

the rest of the apparatus. And of particular concern was the 

seemingly direct conflict, from the standpoint of a wave theory, 

between the existence of stellar aberration and the absence of 

any fringe shift in the Michelson-Morley experiment. 

By way of summary to the discussions and presentation of 

evidence in this chapter, we show in Table 2-1 the way in which 

the various observational results fit into a description of light as 

particles traveling through space or as waves propagating through 

a luminiferous medium. This may help to give a better idea of 

how the different pieces of evidence bear on the general problem 

of the propagation of light. 

'Perhaps the most damning evidence against any particle theory was the 

experimental proof (first obtained by Foucault and Fizeau in 1850) that 

light travels more slowly in water than in air, whereas the facts of refraction 

would, in terms of a particle model, require just the opposite to be true. 
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TABLE 2-1: EVIDENCE BEARING ON THE NATURE OF LIGHT 

Particle model Wave /ether model 

1. Light travels in straight 
lines 

2. Interference and 
diffraction effects 

3. Polarization of light 

4. Light velocity inde¬ 
pendent of source velocity 

5. Speed of light greater in 
air than in water 

6. Fizeau experiment and 
Airy (water-filled tele¬ 
scope) experiment 

7. Stellar aberration 
(Bradley) 

8. Michelson-Morley 
experiment 

v/ 

No convincing explanation 

No convincing explanation 

Definite disagreement 

Definite disagreement 

Requires partial drag of 
light by medium 

v/ 

v/ 

OK if wavelength « beam 
width 

%/ 

%/ 

v/ 

v/ 

Requires partial drag of 
light by medium 

OK if earth moves with 
respect to ether 

Implies that earth does not 
move with respect to ether 

If one regards the table as a kind of score-sheet, one sees 

that each theoretical model wins several checkmarks, correspond¬ 

ing to phenomena that are readily and convincingly explained in 

terms of the model in question. The particle model appears, 

however, to be definitely disqualified by the observations that 

the velocity of light is completely unaffected by the motion of its 

source, and that light travels faster in air than in water (or other 

dense media). Turning then to the wave theory, which indeed 

has been the main basis of our discussions throughout this chap¬ 

ter, we are confronted by the seeming conflict and incompatibility 

between the last two results listed in the table—stellar aberration 

and the Michelson-Morley experiment. Einstein was the first 

person to realize that the situation could not be met by a mere 

patching up of traditional theories. His radical and profound 

solution to the problem is the chief subject of Chapter 3. 

PROBLEMS 

2-1 (a) The head of SPECTRE has devised a fiendish plot to liquidate 
his mortal enemy 007; he will cause a toxic rain to fall on the deserted 
valley where the intelligence agent is staying with a companion. 
Fortunately Mr. Bond’s latest bag of tricks contains an umbrella. If 
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the rain falls at a speed of 10 m/sec, at what angle with the vertical 
must 007 hold the umbrella to stay dry as he and his companion 
run at a speed of 10 miles/hr to catch the next bus out of the deserted 
valley? 

(b) A star in the sky is observed from earth to describe an el¬ 
liptical path whose minor axis subtends an angle of 36". What angle 
does the star make with the ecliptic ? 

(c) Suppose the apparent elliptical motion in part (b) were due 
entirely to the parallax effect. Approximately how far away (in light- 
years) from the sun would the star be ? 

2-2 The following is a sample of the data from the Fizeau “ether- 
drag” experiment as repeated in 1886 by Michelson and Morley: 

Mean wavelength of light used 5700 A 
Length of each tube 6.15 m 
Velocity of water flow 7.65 m/sec 
Mean fringe shift upon reversal of flow 0.86 ± 0.01 

Compare the value of the “drag coefficient” implied by these data with 
the value of 1 — 1/w2 for water (n = 1.33). 

2-3 The Fizeau experiment as described in the text requires a rapid 
flow of water through the apparatus, often leading to turbulence. A 
possible alternative to this situation would be to pass light through a 
rotating disk of optical glass (see the figure). 

(a) Show that the optical path difference between the beams is 
where n is the index of refraction of 
glass, / the drag coefficient, co the 
angular frequency of rotation, and c 
the speed of light. 

(b) If /= 1 - n~2, n = 1.50, 
/ = 20 cm, R = 20 cm, and X = 
5300 A, how fast must the disk be 
rotated to produce a maximum opti¬ 
cal path difference equal to 0.2X ? 

2n2flu(4R- - /2)1/2/c 

CO 

Laser 

2-4 In a modern Fizeau experiment, a laser is in one arm of a tri¬ 
angular arrangement of mirrors (see the figure). A slab of glass 
(n = 1.5) 1 cm thick is inserted in another arm of the system. The 
laser light can travel in a closed path in either direction. When the 
slab is stationary the two optical paths are identical. Suppose now 
that the slab is moved with a speed of 1 cm/sec in the direction in¬ 
dicated. What is now the optical path difference? (This difference, 
although minute, leads to a splitting of the laser frequency which can 
be converted to an audible beat note if samples of the oppositely 
circulating beams are suitably combined in a detector.) Note: This 
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differs importantly from the original Fizeau arrangement, in that the 

boundaries of the medium change position while the light passes 

through. Your calculation must take account of this fact. 

2-5 The text refers to Roemer’s determination of the speed of light 

from the apparent variations in the time intervals between successive 

eclipses of Jupiter’s moons. To analyze this quantitatively, consider 

the positions P and Q of the earth corresponding to observations of 

two successive eclipses of one of Jupiter’s moons (see the figure). 

(a) Show that, if the true time interval between eclipses is r (equal 

to the orbital period of a moon), the observed time interval is r + Ar, 

where At «= R AS sin 8/c and AS « vt/R. Hence show that the 

accumulated time lag as the earth moves from AtoB (ignoring Jupiter’s 

own change of position) is 2R/c. 

(b) The period of Jupiter’s second moon, Europa, is 3.55 days. 

What is the maximum discrepancy between this true period and the 

time interval between successive eclipses as observed at the earth? 

What is the accumulated time lag between A and B? (Earth’s orbital 

speed = 30 km/sec; orbital radius = 1.49 X 108 km.) 

2-6 In one arm of a Michelson interferometer there is placed a closed 

tube of length 0.2 m with transparent end pieces through which the 

light passes freely. A fringe pattern is observed using light of wave¬ 

length 5.9 X 10-7 m, and then the air is evacuated out of the tube. 

By how many fringes will the fringe pattern shift? The speed of light 

in air is (1 — 2.9 X 10_4)c. 

2-7 In the Michelson-Morley experiment of 1887, the length / of each 

arm of the interferometer was 11 m, and sodium light of wavelength 

5.9 X 10_7m was used. The experiment would have revealed any 

fringe shift larger than 0.005 fringe. What upper limit does this place 

on the speed of the earth through the supposed ether? 

2-8 The ether-wind theory of the Michelson-Morley experiment is 

discussed in the text for the special case where the arms of the inter¬ 

ferometer are parallel and perpendicular to the wind. Consider the 

general case for an angular setting 6 as shown (see the figure). Prove 

that, for equal arms of length /, the time difference for the two paths 
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is given to a good approximation by 

2. 

At(6) = cos 26 
cs 

2-9 A Michelson interferometer for sound waves is made with a loud¬ 

speaker as source, a microphone as detector, a thin sheet of paper as 

beam splitter, and two pieces of board as mirrors (see the figure). The 

arms of the interferometer are of equal length /, and the whole ap¬ 

paratus can be rotated. A wind, constant in speed and direction, blows 

past the apparatus. Once every second the speaker emits a very brief 

pulse of sound. Answer the following questions, using the result of 

Problem 2-8. 

(a) In most orientations of the interferometer the echo received 

by the microphone consists of two pulses in quick succession. Why ? 

(b) At certain orientations of the interferometer the time delay 

between the two echoes is maximum. How many such orientations 

are there in one complete revolution of the apparatus? In relation to 

the direction of the wind, what are these orientations ? 

(c) If the length of each arm of the interferometer is 3 m, and the 

maximum time delay between echoes is found to be 10-5 sec, what is 

the speed of the wind? Sound waves travel with a constant velocity 

relative to the air. Take the magnitude of this velocity to be 300 m/sec. 

/ 
Beam splitter 

Speaker^ / 

D 
Microphone 
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In the autumn of [1905] . . . Einstein published a paper which 

set forth the relativity theory of Poincare and Lorentz with 

some amplifications, and which attracted much attention. 

E. T. WHITTAKER, 

History of the Theories 

of Aether and Electricity (1953) 

This quotation has become famous for its failure to give adequate credit to 

Einstein. See the discussion in the Epilogue of this book. 



3 
Einstein and 

the Lorentz-Einstein 

transformations 

PREAMBLE: THE CONTRACTION HYPOTHESIS 

why did the Michelson-Morley experiment yield a null result? 

It was a question that troubled some of the finest minds in 19th- 

century physics. There was no doubt about the facts; as we saw 

in Chapter 2, they were supported by a number of other optical 

observations which all told the same story—that nature would 

apparently yield up no information about our state of motion 

with respect to a supposed fundamental frame of reference. And 

this view of things was precisely the one that most physicists 

took: the ether existed, and motion through it was real, but 

compensating effects were at work. The most famous of such 

special mechanisms was that devised by the Irishman G. F. 

FitzGerald and the Dutchman H. A. Lorentz (independently) in 

1892, to explain the result of the Michelson-Morley experiment— 

a real contraction of a body along its direction of motion through 

the ether. If the contraction is by the factor (1 — u2/c2)1/2, then 

a zero fringe shift follows directly. This is evident almost by 

inspection if one considers the situation (as we did in Chapter 2) 

in which the arms of the Michelson interferometer are assumed 

to lie along and perpendicular to the direction of the earth’s 

motion. The times for the light to travel along its two possible 

paths are as already derived [Eqs. (2-9) and (2-10)]: 
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(3-1) 

11 

*2 

2/i/c 
1 _ V2fc2 

2h/c 
(1 - i;2/c2)1/2 

Suppose that a rod of normal length /0 preserves that length if 

moving transversely to itself but shrinks to /0(1 — v2/c2)112 if 

moving parallel to itself. Then in Fig. 3-l(a) we should have 

h = /rod - v2/c2)1/2 h = ho 

Hence we should have 

_ 2/io/c 2/20/c 
1 (1 - u2/c2)1/2 t2 (1 _ i;2/c2)l/2 

and so 

_ _ 2(/iq — ho)/c 
1 2 (1 - c2/C2)l/2 

(3-2) 

Thus, if the interferometer were turned through 90°, so that the 

two arms exchanged roles, the time difference would again have 

the same value. These two positions are obviously rather special 

ones, but further calculation shows that in an arbitrary orienta¬ 

tion, as in Fig. 3-1(b), the time difference is still correctly given 

by Eq. (3-2) if one assumes that, for an inclined arm, the com¬ 

ponent of length parallel to v shrinks and the component trans¬ 

verse to v remains unchanged. Thus with arm 1, for example, 

the relation between h and the normal length /10 would be 

given by 

ho2 = (/1 sin df + 
(/1 cos ef 
1 - 1>2/c2 

(3-3) 

Fig. 3-1 ^a) A 

Michelson-Morley 

apparatus with one 

arm headed directly 

into a supposed 

“ether wind." 

lb) The same appara¬ 

tus in an arbitrary 

orientation. 
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You should satisfy yourself that this condition, and an analogous 

one for arm 2, lead to Eq. (3-2) for any value of 6. 

EINSTEIN REASSERTS RELATIVITY 

To this situation of clever (indeed, very distinguished) but es¬ 

sentially ad hoc theorizing, Einstein brought a piercing clarity of 

outlook—the kind of exalted simplicity that belongs to genius. 

Instead of imposing preconceived ideas on the facts, he let him¬ 

self be guided by a bare minimum of data to a fundamental 

revision of ideas. It was an astonishing achievement in a field 

full of intellectual giants. At the beginning of his wonderful 

paper in which special relativity was brought into existence,1 he 

comments on the fact that in such phenomena as the mutual 

interaction of a magnet and a conductor, it is only the relative 

motion that matters, and not the separate motion of either. And 

he goes on as follows: 

Examples of this sort, together with the unsuccessful attempts 

to discover any motion of the earth relatively to the “light 

medium,” suggest that the phenomena of electrodynamics as 

well as of mechanics possess no properties corresponding to the 

idea of absolute rest. They suggest rather that... the same laws 

of electrodynamics and optics will be valid for all frames of 

reference for which the equations of mechanics hold good. We 

will raise this conjecture... to the status of a postulate, and 

also introduce another postulate, which is only apparently ir¬ 

reconcilable with the former, namely, that light is always prop¬ 

agated in empty space with a definite velocity c which is inde¬ 

pendent of the state of motion of the emitting body. 

With these words Einstein proclaimed the universality of c 

and the equivalence of inertial frames for all purposes. It was a 

major development in the history of ideas. Hermann Bondi, the 

British cosmologist, has commented on it in a very interesting 

way2: 

If the spirit of the principles of Newtonian relativity is applied, 

it follows that this basic feature, the velocity of light, should be 

independent of the inertial system from which it is observed. 

The assertion that this is so ... is known as the special theory 

*A. Einstein, Ann. Physik, 17, 891 (1905); translated by W. Perrett and 
G. B. Jeffery, 1923, in The Principle of Relativity, Dover, New York. 

SH. Bondi, Endeavour, 20,121 (1961). 
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of relativity ... Thus the theory is, in a sense, profoundly con¬ 

servative; the principles that have been found to hold for 

dynamics are stated to hold for the whole of physics. The 

special theory of relativity is a necessary consequence of any 

assertion that the unity of physics is essential, for it would be 

intolerable for all inertial systems to be equivalent from a dy¬ 

namical point of view yet distinguishable by optical measure¬ 

ments. It now seems almost incredible that the possibility of 

such a discrimination was taken for granted in the nineteenth 

century, but at the time it was not easy to see what was more 

important—the universal validity of the Newtonian principle of 

relativity or the absolute nature of time .... 

This last phrase of Bondi’s brings us to the heart of Einstein’s 

thinking. The nature of time was the crux. It took Einstein’s in¬ 

sight to bring about the realization that a fundamental analysis 

of this kind was called for. But equally impressive was Einstein’s 

conviction that all observable physical phenomena must depend 

only on relative motions. And before we follow Einstein into 

special relativity as such, it will be appropriate to say a little 

about relativity principles in general, and about the Newtonian 

scheme which, as Bondi points out, has so much in common 

with the newer dynamics of Einstein. 

RELATIVITY ACCORDING TO GALILEO AND NEWTON 

What is a relativity principle? It is an assertion about the laws 

of nature as they would be determined by observations made in 

different frames of reference. The assertion is made in an explicit 

form, founded upon experience, that there are whole classes of 

reference frames with respect to which the laws of physics have 

precisely the same form. Observers stationed in these different 

frames make measurements which may in themselves be different, 

but which lead to the same conclusions about laws of force, etc. 

A relativity principle is a statement, in other words, about an 

essential lack of privilege in nature; it places a whole group of 

reference frames on a precisely equivalent status. Bondi put it 

this way at the beginning of a review article on relativity1: 

It is the purpose of every physical theory to describe in a concise 

manner a wide variety of phenomena. In many cases this will 

necessitate, as part of the theory, a prescription for applying the 

theory to systems in differing states of motion. A prescription 

>H. Bondi, Rept. Progr. Phys., 22, 97-120 (1959). 
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of this kind, a code of translation as it were, will generally con¬ 
sist of a mathematical system of transformation laws. 

It is in the nature of transformation laws to change most quan¬ 
tities but to leave some quantities unchanged. These [latter] are 
called the invariants of the transformation and serve to define 
its character. A physical statement of what these invariants are 
is called a principle of relativity, and the fundamental equations 
of a theory usually define the principle of relativity applicable 
to it. 

Relativity in this sense is already embodied in Newtonian me¬ 

chanics, which suggests a unique importance and interest to be 

attached to inertial reference frames—i.e., to all those frames 

(related one to another by some constant velocity) in which 

Galileo’s law of inertia holds good. 

It is to Galileo that we owe the first clear discussion of such 

questions. In the famous book in which he advocated the Coper- 

nican view of the solar system against the Ptolemaic, he argued 

that the vertical path of a falling object does not compel one to 

the conclusion that the earth is stationary.1 He gave, by way of 

analogy, the example of a rock dropped from the top of the mast 

of a ship. Whether the ship is at rest or moving with a constant 

velocity, the rock always lands just at the foot of the mast. Thus 

an observation of the point of impact on the deck reveals nothing 

of the ship’s state of motion. The measured path of a falling 

rock, in the frame in which it is released from rest, is always a 

vertical straight line, whether that frame is stationary or has some 

constant horizontal velocity with respect to the earth. Expressed 

in this way, the result is an embodiment of a relativity principle, 

for it contains the assertion that a certain law of nature (the law 

of free fall) is the same in all reference frames differing only by 

some constant horizontal velocity. 

A closely related example is the observation of one and the 

same falling object from two different reference frames. Suppose, 

for example, that a rock, released from a moving ship, is ob¬ 

served both from the ship and from the land. Then in one case 

the path would be seen as a vertical straight line, and in the 

other case as a parabola. But if, now, we analyze these motions 

with the help of Newton’s dynamics, we discover that, although 

the motions are different, they yield identical conclusions about 

'Galileo, Dialogue Concerning the Two Chief World Systems—Ptolemaic and 

Copernican, translated by Stillman Drake, Univ. California Press, Berkeley, 

1953. 
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the magnitude of the acceleration and hence about the force 

causing it. 

The relationship between measurements of a given motion 

as observed in different reference frames is expressed by a set of 

transformation equations. In Newtonian mechanics, the relevant 

equations are named in honor of Galileo, who first recognized 

the principle of inertia. They relate measurements of position, 

time, velocity, and acceleration in an inertial frame S to the 

corresponding measurements made in a frame S' that has a 

constant velocity v along the x direction relative to S: 

(and x = x' + vt) 

Galilean 

‘transformation 

equations 
(and ux = Ux + v) 

(3-4) 

Actually any follower of Newton would have regarded the first 

three equations alone as being sufficient to define the relationship 

between two inertial frames in relative motion. It would not 

have been considered necessary to spell out the relationship 

t' = t, since the notion of a universal time was in the very foun¬ 

dation of Newtonian mechanics: “Absolute, true and mathe¬ 

matical time, of itself, and from its own nature, flows equably 

without relation to anything external.”1 Given this universal 

time, and the first three of equations (3-4), the relation of the 

measures of velocity in different inertial frames is completely 

defined, and the measure of an acceleration is the same in all 

such frames. In Newtonian mechanics, the acceleration is an 

invariant. 

We shall go a little further to see how the statement of a 

physical law of some kind is affected (or not) by the act of trans¬ 

forming it to a different reference frame. We shall then be ready 

to consider Einstein’s ideas more fully. 

THE TRANSFORMATION OF NEWTON’S LAW 

The basic statement of Newtonian mechanics is F = ma. What 

do we mean by a transformation of this law? Unless we have 

an explicit law of force, F = ma is only a definition of F. So 

•Newton’s Principia, Book I, Scholium after Definitions. 
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let us consider the force provided by the interaction between two 

bodies. Suppose it is a function only of their separation, and 

does not depend on their velocities or accelerations. Then we 

can put 

F\2=f(x2 — xi) (3-5) 

This is the force exerted on body 2 by body 1. Thus the equation 

of motion of body 2, as observed in an inertial frame S, is given 

by 

fix 2 — xi) = mzaz (3-6) 

With the help of the Galilean transformation, equations (3-4), 

we can rewrite Eq. (3-6) entirely in terms of measurements made 

in the frame S'. The transformed value of the force is defined by 

Fi2' = f(x2' - Xl') 

But we have 

X2' — Xl' = (X2 — Vt) — (*1 — Vt) = X2 — *1 

Thus 

F12' = f(x2 - *l) = F12 

Turning now to the right side of Eq. (3-6), the Galilean trans¬ 

formation gives us a = a', and in Newtonian dynamics the 

inertial mass m is a constant: m2 = m2. Thus we are able to 

write 

F12' = fix2' - xi') = m2'a2' (3-7) 

We see, then, in this admittedly very simple example, how the 

Newtonian law of motion is unaltered by the Galilean trans¬ 

formation. A more complicated force law, as long as it involved 

only the relative positions and velocities of two interacting 

particles, would possess this same property that we call invariance. 

If, however, the force depended on absolute positions and ve¬ 

locities—e.g., if it contained terms like x22 — xx2—the form of 

the equation of motion would cease to be the same in all inertial 

frames. Nothing in our experience has revealed such a situation, 

which would make the laws of physics appear different in our 

laboratory and in a train or plane moving at constant velocity. 

Consider, for example, the simple phenomenon of a collision of 

two billiard balls as perceived by several observers in different 

inertial frames. Each observer analyzes this (same) collision 

69 The transformation of Newton’s law 



process from his own perspective and records such data as posi¬ 

tion, velocity, etc., as measured with respect to his own frame. 

The different sets of data will, in general, not agree with each 

other, but the dynamic laws of the collision, as deduced from 

the measurements, are the same for all observers. If the physical 

laws were different for one or more observers, this might be a 

clue to the uniqueness of certain frames of reference, and thus all 

inertial frames would not be on an equal footing. 

It was the assumption of 19th-century optics that a unique 

reference frame, defined by the luminiferous ether, did indeed 

exist, but we have seen something of the difficulties and contra¬ 

dictions that this assumption led to. We find no positive evidence 

for the existence of any such frame; it appears that all our phys¬ 

ical experience is consistent with the dynamical equivalence of all 

inertial frames. It remains true, however, as we saw in Chapter 1, 

that the predictions of Newtonian mechanics are not borne out 

by experience if sufficiently high speeds are involved. What has 

gone wrong—or, to be more positive, what scheme of things will 

allow us to fit all this experience together? It turns out that a 

solution can be found in the following terms: 

All inertial frames are indeed equivalent under all conditions, 

but the laws of motion and transformation must be modified. 

What we shall now proceed to do is (following Einstein) to 

replace the Galilean transformations by another set—the Lorentz- 

Einstein transformations—that will allow us to preserve the 

Newtonian principle of relativity and yet encompass the devia¬ 

tions from Newtonian dynamical behavior. We shall begin with 

a restatement of Einstein’s basic ideas. 

EINSTEIN AND THE UNIVERSALITY OF c 

The novel idea that Einstein brought into physics was very pro¬ 

found, yet perfectly easy to grasp. He pointed out that the 

analysis of motions had been based on an abstraction—the 

existence of a universal, absolute time. He argued that this was 

untenable, and that, as a matter of fundamental principle, “the 

justification for a physical concept lies exclusively in its clear 

and unambiguous relation to facts that can be experienced.”1 

One may have metaphysical notions about time, but when it 

■Quoted from a lecture by Einstein in 1921 (reprinted in his Ideas and 

Opinions). 

70 Einstein and the Lorentz-Einstein transformations 



comes to making measurements one is dealing with observations 

made with actual physical devices—we call them clocks. Here 

are some examples: 

A mechanical clock or watch, with spring, escapement, and gears 

The rotating earth 

A beam of ammonia molecules in a maser 

A quartz crystal 

A group of radioactive particles 

Your own pulse 

If we wish to describe quantitatively the motion of a body, 

we must be able to give its coordinates as a function of time. 

What does this involve? Again we may quote from Einstein’s 

1905 paper, which states the case better than any paraphrase 

would: 

We have to take into account that all our judgments in which 
time plays a part are always judgments of simultaneous events. 
If, for instance, I say “That train arrives here at 7 o’clock,” I 
mean something like this: “The pointing of the small hand of 
my watch to 7 and the arrival of the train are simultaneous 
events.” 

This seems straightforward—almost trivial. But then 

Einstein goes on to point out that a problem arises if, as in 

describing the motion of a body, we want to establish a time 

relationship between events that occur at different places. Sup¬ 

pose, for example, that we wish to measure the velocity of a body. 

We note its position ri at time t\ and its position r2 at time /2. 

Then 
T2 - ri v =- 
h - n 

But, in terms of Einstein’s analysis, this means that we must 

make use of a clock reading ti that is simultaneous with the 

arrival of the body at r1( and another clock reading /2 that is 

simultaneous with the arrival of the body at r2. And whatever 

particular method of measurement we use, our observations have 

no meaning unless we can also define what we mean by the same 

time at the two different locations. If we could transmit infor¬ 

mation at infinite speed there would be no problem. But this we 

cannot do. Instead, we seize on the large but finite speed of 

electromagnetic signals in vacuum as the means for relating time 

measurements at different places. This was Einstein’s argument, 

and it proceeded roughly as follows. 
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Suppose we have observation stations at two different places, 

A and B. A clock at A can record the time differences between 

events that occur in the immediate vicinity of A. Similarly, a 

clock at B can record the times of events that occur in the im¬ 

mediate vicinity of B. We thus have an “A time” and a “B time.” 

To establish a common time for A and B together, we say, as a 

matter of definition, that the time required for a light signal to 

travel from A to B is equal to the time required for a light signal 

to travel from B to A. Thus if a light signal starts out from A at 

t = 0, is reflected by a mirror at B, and arrives back at A at / = t0, 

then the time at which the signal reaches B is defined as being 

t0/2. This gives us a specific procedure for synchronizing clocks 

that are at different places. 

A corollary of this definition of the relation of time mea¬ 

surements at different places is that, again as a matter of defini¬ 

tion, the speed of light in vacuum has the same value in all cir¬ 

cumstances. Einstein incorporated this statement in his original 

formulation of the special relativity theory. His theory is entirely 

founded, in fact, on the following two postulates: 

Postulate 1: A11 inertial frames are equivalent with respect to all 

the laws of physics. 

Postulate 2: The speed of light in empty space always has the 

same value c. 

It is very remarkable that a whole new dynamics can be based on 

two such brief statements. Only an extraordinary mind could 

have discerned this possibility. 

THE SECOND POSTULATE AND OBSERVATIONAL EVIDENCE 

Einstein’s second postulate, on the universality of c, was a dra¬ 

matic innovation. It was framed in a way that would seem to 

deny the possibility of any independent experimental check. It 

has been argued, however, that this essential feature of special 

relativity can in fact be based on observational evidence (much 

of it, however, not available until long after Einstein had de¬ 

veloped the theory).1 We shall comment briefly on some aspects 

of this point of view, in terms of specific experiments. 

'This was discussed by H. P. Robertson in an article in a special issue of 

Reviews of Modern Physics, celebrating Einstein’s 70th birthday lRev. Mod. 

Phys., 21, 378 (1949)]. 
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The Michelson-Morley experiment 

In this experiment the Michelson interferometer was made with 

arms of equal length. No fringe shift occurred as the apparatus 

was rotated through 360°—an operation taking only a few min¬ 

utes, during which time the state of motion of the laboratory did 

not change significantly. This null result is consistent with the 

proposition that the speed of light is the same in all directions 

with respect to a reference frame having some arbitrary (but un¬ 

known) motion through space. 

The Kennedy-Thorndike experiment1 

In 1932 R. J. Kennedy and E. M. Thorndike performed an ex¬ 

periment that was very similar to the Michelson-Morley experi¬ 

ment but differed from it in two significant ways. First, the arms 

of the interferometer were made of different lengths. (The dif¬ 

ference was about 16 cm, as large as was consistent with getting 

good-quality interference fringes.) Second, the apparatus was 

fixed in the laboratory and the interference fringes were observed 

over a period of months—an experiment putting extreme de¬ 

mands on the mechanical stability and constancy of the apparatus. 

No fringe shifts associated with either the diurnal or the seasonal 

changes in the motion of the laboratory were found. If we inter¬ 

pret the Michelson-Morley experiment as we have done just 

above, then the null result of the Kennedy-Thorndike experiment 

can be construed as evidence that the time for light to travel the 

extra distance 2|/2 — /i| in the longer arm of the interferometer 

is the same in reference frames having quite different velocities. 

(It may be noted, strictly parenthetically, that if the contraction 

hypothesis were adopted as an explanation of the Michelson- 

Morley result, it would not explain the Kennedy-Thorndike 

experiment. If you refer to Eq. (3-2), which incorporates a 

Lorentz-Fitzgeraid contraction, the time difference as calculated 

from the ether-wind hypothesis will still change if the speed v 

changes, except in the special case that 110 = ho- This carries 

its own implication that our measures of time as well as of dis¬ 

tance will need to be modified.) 

Light from a moving source 

It is an essential feature of Einstein’s second postulate that the 

speed with which light signals travel away from a given source is 

‘R. J. Kennedy and E. M. Thorndike, Phys. Rev., 42, 400 (1932). 
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quite independent of any motion of the source itself. In our 

first discussion of the Michelson-Morley experiment (in Chapter 2) 

we stated that this was indeed the case. For a long time it was 

believed that this was proved by observations on the light from 

close binary stars. The two members of any such binary system 

have large relative velocities, and when one star has a component 

of velocity toward the earth the other will be moving away. It 

was argued that if these velocities were communicated to the 

emitted light, the apparent motions of the stars would be dis¬ 

torted away from the Newtonian orbits required by the law of 

gravitation. No such distortions were observed. It has been more 

recently argued, however, that since these binary star systems are 

usually surrounded by a gas cloud, which absorbs and then re¬ 

radiates the light from the stars, the speed of the light that crosses 

interstellar space may in any case be independent of any possible 

influence of the original moving sources.1 Subsequently, how¬ 

ever, experiments have been made on rapidly moving terrestrial 

sources of radiation which verify this aspect of Einstein’s second 

postulate in a convincing way. In one such experiment made with 

high-energy photons, not visible light, the source consisted of 

unstable particles (neutral ir mesons) traveling at 99.975% of the 

speed of light. The measured speed of the photons emitted 

forward with respect to this motion was (2.9977 ± 0.0004) X 

108 m/sec.2 Reference to Table 1-2 will show that this is in 

excellent agreement with the best values of c obtained for sta¬ 

tionary sources. In Chapters 5 and 6 we shall discuss in more 

detail the radiation from moving sources, in connection with the 

relativistic law of addition of velocities and related phenomena. 

THE RELATIVITY OF SIMULTANEITY 

An immediate consequence of Einstein’s prescription for syn¬ 

chronizing clocks at different locations is that simultaneity is 

relative, not absolute. Let us see how this follows. 

Suppose that three observation stations A, B, and C are 

equally spaced along the x axis of an inertial frame S in which 

they are all at rest. We can construct a simple x-t coordinate 

system, on which we draw “world lines” (to use the accepted 

phraseology) showing the development of the system in space 

‘J. G. Fox, Am. J. Phys., 30, 297 (1962). 

2T. Alvager, F. J. M. Farley, J. Kjellman and I. Wallin, Phys. Letters, 12, 
260 (1964). 
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Fig. 3-2 (a) Space-time diagram showing experiment 

to define simultaneity at stations A and C (at rest in this 

reference frame) by light signals emitted from a station 

B midway between them, (b) Equivalent experiment for 

the case in which A, B, and C all have a velocity with 

respect to the reference frame. 

and time [Fig. 3-2(a)]. The world line of any given particle is 

just a graph of its position as a function of time; it provides a 

complete picture of the history of the particle as observed within 

a given frame of reference. The world lines of A, B, and C are of 

course just vertical lines parallel to the t axis, corresponding to 

x = constant. Suppose that a light or radio signal is sent out 

from B at t = 0. It travels at the same speed c forward and back¬ 

ward along the x axis—an assertion that embodies the uni¬ 

versality of c. This signal is described by two sloping lines 

x = xB ± ct. The arrival of the signal at the positions of A 

and C is thus given by the intersections Au C\, and simultaneity 

at the positions of A and C is defined by the line A rCi, parallel 

to the x axis, which joins a series of points possessing the same 

value of t. 

But now suppose that A, B, and C are at rest in an inertial 

frame S' which is moving with respect to 5 at a speed v along 

the x direction [Fig. 3-2(b)]. The world lines of A, B, and C are 

now inclined as shown. A signal sent from B at l = 0 is again 

described (in S) by the lines x = xb ± ct, and the arrival of the 

signal at the positions of A and C is now given by the inter¬ 

sections A i and C\. These are clearly not simultaneous for S, 

because the line A /CY is manifestly not parallel to the x axis. 

Or, to put it more concretely, the signal reaches A before it 

reaches C because, as observed in S, A is running to meet the 

signal pulse whereas C is running away from it. But we require 
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B to be midway between A and C in S' as well as in S. Accepting 

the universality of c and the equivalence of inertial frames, we 

therefore demand that A / and CY represent simultaneous events 

in S'. (An event, from the standpoint of relativity theory, is 

completely characterized by its space and time coordinates in a 

given frame of reference.) Our judgment of simultaneity is a 

function of the particular frame of reference we use. 

It is natural to ask why we should base this definition of 

simultaneity on the velocity c in particular and not on any other 

possible signal velocity. The simplest answer to this is to point 

to the obvious uniqueness of c, not merely as the speed of light, 

but as the ultimate speed in all of dynamics. A more convincing 

reply (at least in the long run) is that this choice does indeed have 

the consequence that every known physical law has the same 

form in all inertial frames. 

In the above discussion we have demonstrated in a qualitative 

way the relativity of simultaneity. Our next step must be to 

develop the quantitative aspects of time and space measurements 

according to special relativity. 

THE LORENTZ-EINSTEIN TRANSFORMATIONS 

Look now at Fig. 3-3. It depicts the operation of defining 

simultaneity at stations A and C which are moving at speed v 

with respect to an inertial frame S. We have already discussed 

such a diagram (cf. Fig. 3-2). But now we have added lines to 

represent the coordinate axes of the frame S' in which A and C 

Fig. 3-3 Specifica¬ 

tion of coordinate 

axes (x, f) and (x', /') 

for two reference 

frames in relative 

motion. 

t 
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Fig. 3-4 Space-time 

coordinates of a 

given point event in 

two different inertial 

frames. 

are at rest. How have we done this? The axis of t' is readily 

described; it is the line x' = 0, i.e., the world line of the origin 

of S'. And since the frame S' has a speed v along the x direction 

with respect to S, the position of this origin is described in S by 

the equation x = vl if the origins of S' and S' coincide at the 

time 1 = 0. 
What about the axis of x'? This is the line that connects all 

points corresponding to t' = 0. Any line of the form t' = con¬ 

stant is parallel to this x’ axis. But the line A ,'C/ is just such 

a line, since A \ and C{ are events by which simultaneity in S' 

is defined. Hence we construct the x’ axis by drawing a line 

parallel to A \'C\, and for convenience we make it pass through 

O, which is thus described both by x = 0, t = 0 and by x' = 0, 

t' = 0. The noncoincidence of the axes of x and x' does not, 

of course, imply any geometric tilting of one with respect to the 

other; it is a purely formal tilting in the abstract space con¬ 

structed from the x and t coordinates. 

Now this type of diagram displays for us a key feature of 

the kinematic transformations of special relativity. In Fig. 3-4 

any point P in the plane of the diagram represents what is called 

a point event, which can be characterized alternatively by the 

values of x and t or of x' and t'. And our construction implies 

that x! and /' alike should be linear functions of both x and t. 

Similarly, x and t are linear functions of x' and t'. This linearity 

is a fundamental property of the transformation equations. If 

they did not have this form, a motion recorded as motion at 

constant velocity along a straight line in one frame (say S) would 
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not be recorded as uniform rectilinear motion in S'. This would 

therefore conflict with Galileo’s law of inertia and with our basic 

dynamical condition that all inertial frames are equivalent. 

The symmetry implied by the relativity principle means that 

the form of the relationships must be as follows: 

x — ax’ + bt' 

with (3-8) 

x' = ax — bt 

These are set up so as to resemble as closely as possible the 

Galilean transformation [equations (3-4)] to which they must 

certainly reduce for sufficiently small values of the speed v of S' 

relative to S. The motion of the origin of S' as measured in S' is 

defined by putting x = 0 in the first of these equations. Similarly, 

the motion of the origin of S' as measured in S is defined by 

putting x’ = 0 in the second equation. The velocities are equal 

and opposite and both of magnitude v. This gives us the condition 

b/a = o (3-9) 

Next we consider the descriptions according to S and S' of 

a light signal traveling in the positive x direction. Let the signal 

originate at O of Fig. 3-3. It is then described by the following 

very simple equations in S and S', respectively: 

x = ct x' = ct' (3-10) 

Substitute these particular expressions for x and x' in equations 

(3-8), and we get the following: 

ct = (ac + b)t' 

ct' = (ac — b)t 
(3-11) 

Eliminating t and t' between these last equations, and using the 

condition b = av from Eq. (3-9), we find 

c2 = a2(c2 — v2) 

Therefore, 

a = (1 - y2/C2)l/2 (3_12) 

It may be noted that this coefficient, a, is precisely the factor 7(v) 

that emerged in our dynamical analysis in Chapter 1—cf. Eq. 

(1-22). We can now rewrite equations (3-8) in the following 
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explicit form: 

* = (1 - J/c2)l/2 & + = 7<X' + *'> 

and X' = (T _ i/c2)l/2 - "> = 7(X ~ "> ’ 

where 

7(c) = (i - cVr1/2 

(3-13) 

These differ from the Galilean transformations by having the 

factor 7 (> 1) as a multiplier on the right, and it is clear that the 

Galilean equations are a limiting form of equations (3-13) for 

v/c —* 0. 

Given equations (3-13) it is a matter of elementary algebra 

to obtain the following expressions for t and t'\ 

t = 7(/' + vx'/c2) 
, (3-14) 

t' = 7(/ - vx/c2) 

The reduction of these to the Galilean relation t = t' requires 

x « ct as well as v/c « 1. Equations (3-13) and (3-14) are the 

revised version of the transformations relating x and t for two 

inertial frames in relative motion along the x direction. 

To complete our statement of the transformation of mea¬ 

surements between two reference frames in relative motion, we 

need the connection between measures of a distance (y or z) 

transverse to the direction of relative motion of the frames. 

Clearly, if space is isotropic, all displacements transverse to the 

unique direction defined by the relative motion are equivalent, 

and it is not difficult to conclude that the appropriate trans¬ 

formations are of simple equality: 

y-y z = z' (3-15) 

We can argue this on the grounds that, if it were not true, we 

should have a way of detecting absolute displacements and 

motions. Imagine, for example, that we constructed two identical 

square grids, representing xy coordinate systems, one of which 

is going to be associated with a frame S and the other with a 

frame S'. We assume that the grids are first checked for identity 

of spacing when at rest relative to each other. We suppose that 

they are then set in relative motion along x, and that paint 

brushes mounted every 10 cm along the y axis of S leave stripes 

on the grid S'. Likewise, paint brushes mounted every 10 cm 

along / leave stripes on S. Each inertial frame thus receives its 

79 The Lorentz-Einstein transformations 



y 
io|- 

A B 

Fig. 3-5 _ 

Hypothetical experi¬ 

ment to compare 

transverse scales of 

distance O’) for two 

0 
D 

frames in relative 

motion along x. 
-10 

F 

own permanent record of the encounter. We cannot conceive 

that the stripes would be anything but straight lines parallel to x; 

otherwise we should have, in effect, a detector of absolute posi¬ 

tion along x. And suppose the grid S' received stripes as shown 

in Fig. 3-5 from the brushes mounted at / = 10 cm, 0 cm, and 

—10 cm. We should then be forced to conclude, not only that 

the 10-cm intervals of S' have shrunk as measured in S, but also 

that the 10-cm intervals of S appear larger than 10 cm in the 

record they leave on S'. But this would mean an asymmetry 

depending on the direction of motion—whether it was to the 

right or to the left along x. Such a result would violate our es¬ 

sential ideas of relativity and of the homogeneity and isotropy of 

space. We conclude, therefore, that the measure of a transverse 

distance (y or z) must be the same for all inertial systems that 

are in relative motion along x, as expressed in equations (3-15). 

For convenience and future reference, we give the complete 

set of transformations below, expressed both ways—i.e., S' co¬ 

ordinates in terms of S, and vice versa: 

80 Einstein and the Lorentz-Einstein transformations 



The above array of transformation equations was introduced 

by H. A. Lorentz in 1904 as a basis for modifying electromagnetic 

theory so as to reconcile the null result of the Michelson-Morley 

experiment with the existence of a unique inertial frame provided 

by the luminiferous ether. But Einstein discovered the equations 

quite independently a year later with the help of his fresh and 

radical approach to the whole problem. 

MORE ABOUT THE LORENTZ TRANSFORMATIONS1 

In deriving the Lorentz transformations in the last section, we 

considered only the requirements imposed by light signals 

traveling along the x direction. A more general approach would 

have developed them by applying the requirements of Einstein’s 

second postulate to a light signal traveling in an arbitrary di¬ 

rection. Having already set up the transformations, however, 

we can use them to illustrate a seeming paradox which is con¬ 

tained in Einstein’s postulate. It is this: Suppose that a burst of 

light begins spreading out (in vacuum) from the origin of frame 

S &t t = 0. At any later time t the light will have reached all 

points on a sphere of radius r, centered on the origin of S, such 

that r = ct. Then if this same phenomenon is observed with 

respect to a frame S', moving with respect to S' with any velocity 

v, the description of the expanding burst of light is again a sphere, 

in this case centered on the origin of S'—even though, by defini¬ 

tion, the origins of S and S' coincide only at the instant t = t' = 0. 

To see how this result emerges, we take the equation r = ct 

and rewrite it in terms of position and time coordinates mea¬ 

sured in S'. By first squaring both sides of the equation we get 

x2 + y2 + z2 = c2/2 

Now use the right-hand set of equations (3-16). The above 

equation then becomes the following: 

72(x' + vt’)2 + (y')2 + (z')2 = y 2c2W + vx'/c2)2 

It may be noted that the cross terms in x't' on the two sides of 

the equation are equal, and so disappear. Collecting the other 

terms, we have 

Y2(x')2(1 - v2/c2) + (/)2 + (z')2 = 72(/')2(c2 - v2) 

■Having once recognized that these transformations were arrived at by both 

Lorentz and Einstein, we shall usually in future refer to them by this briefer 

and more customary title. 
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But 

72(1 - v2/c2) = 1 

Therefore, 

(*')2 + (y’)2 + (z')2 = c2(/')2 

which defines a sphere of radius r' such that 

r' = ct' 

This result, which at first sight appears to do violence to one’s 

commonsense ideas, is bound up with the relativity of simul¬ 

taneity. Points which, as measured in S, are reached at the same 

time t, are reached at different times as measured in S', in such a 

fashion that the light is properly described as lying on a spherical 

shell expanding at speed c in both frames. 

MINKOWSKI DIAGRAMS: SPACE-TIME 

A valuable aid to the arguments in this chapter has been the use 

of graphs, with axes representing position and time, which allow 

one to display the complete history of a one-dimensional motion. 

The use of such graphs in special relativity was introduced by 

H. Minkowski in 1908, and they are customarily referred to as 

Minkowski diagrams. On any such diagram, as we have seen, 

any individual event—e.g., a light signal striking a detector, or 

one tick of a watch—is uniquely represented by some point P 

(Fig. 3-6). The detailed specification of this event, however, in 

terms of numerical values of x and t, can be made in infinitely 

many different ways according to the particular reference frame 

chosen. The description of a point event is described in frame S 

by the coordinates (x, t) and in S' by the coordinates (x', /'). 

If the origins of S and S' are chosen so as to coincide at t = t' = 0, 

then the relation between (x, t) and (*', /') is contained in the 

Lorentz transformations of equations (3-16). 

It is very convenient to use ct, rather than t, to describe the 

time coordinate. Both coordinates, ct and x, are then expressed 

as distances, and if the scale of distance is chosen to be the same 

for both, the world line of a light signal starting out at x = 0, 

t = 0, is a bisector of the angle between the axes. This holds 

good in all reference frames. We can represent any one such frame 

(say, S) by drawing the axes of x and ct at right angles to one 
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Fig. 3-6 Minkowski 

diagram, showing 

three different 

coordinate systems 

and a calibration 

hyperbola to define 

unit distance along x 

for each system. 

another. Other reference frames (S' and S", for example) are 

then characterized by nonorthogonal axes for distance and time. 

(In Fig. 3-6, S' has some positive velocity along x with respect 

to S, and S" has a negative velocity.) There is nothing special or 

privileged about that frame which we choose to show with 

orthogonal space and time axes. 

To read off the space and time coordinates of a given point 

event P, we draw lines through it, parallel to the space and time 

axes of any chosen reference frame, and read off the intercepts. 

In Fig. 3-6 we have taken S' as the frame, so OQ gives the mea¬ 

sure of x' and OR the measure of ct'. It is very important to 

realize, however, that in a diagram such as Fig. 3-6, the scale, 

representing unit distance, is not the same along the different 

axes x, x', x", etc. To be specific, if we draw the rectangular 

hyperbola defined by 

jc2 - (ct)2 = 1 (3-17) 

its intersections A, B, and C with the axes of x, x', and x" will 

in each case define unit distance from O for the particular frame 

in question (see Fig. 3-6). The justification of this procedure is 

embodied in the discussion in the next section. 

A SPACE-TIME INVARIANT 

Let us now return to the basic kinematic relations of special 

relativity, as expressed in the Lorentz transformations. We have 

seen how special relativity was born out of Einstein’s recognition 
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that neither “where” nor “when” has any absolute meaning. 

Can we salvage something that is well defined out of this de¬ 

scription of things? The answer is yes. Suppose that some 

identifiable event takes place at position x and time t as mea¬ 

sured in a system S. Another observer, moving with respect to 

the first in a system S', will record it as having occurred at x' 

and t' such that 

x' = y(x — Dt) 

t' = 7 (t — vx/c2) 

Let us evaluate (ct')2 — (x')2: 

(ct')2 - (x')2 = 72[(c/ - vx/c)2 - (x - vi)2) 

= 72[(c2 - v2)t2 - (1 - v2/c2)x2] 

i.e., 

(cl’)2 - ix')2 = (cl)2 - (x)2 = s2 (3-18) 

where the quantity s2 is the same for all inertial observers—i.e., 

an invariant. 

The calibration of the axis scales in a Minkowski diagram 

follows at once from this result. For if we put s2 = — 1, we 

have from Eq. (3-18) the dual statements 

x2 - (ct)2 =1 

(x')2 - (ct')2 = 1 (3_19) 

If we choose to take x and ct as orthogonal axes, as in Fig. 3-6, 

the first of the above two equations defines the rectangular 

hyperbola of that figure. The x axis of S is the line ct = 0, and 

we see that the intersection of this line with the right branch of 

the hyperbola defines x = 1. But, in an exactly similar way, the 

line ct' = 0 defines the axis x' of S', and from the second equa¬ 

tion of (3-19) we can deduce that the intersection of this line with 

the same hyperbola corresponds to x' = 1. This hyperbola thus 

acts as a calibration curve for all the inertial frames that may be 

represented on a single Minkowski diagram. What it amounts to 

is that the hyperbola of Eq. (3-17), which defines a particular 

relation between x and t for an infinite number of different 

events as described in the single frame S, is also the locus in 

space-time of all events representing time zero and x coordinate 

equal to unity in different inertial frames. 

What significance does the invariant s2 have? Dimen- 
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sionally, its square root 5 is a distance, so it is tempting to regard 

s as some kind of a measure of the distance (in space-time) by 

which a given event is removed from the origin of space-time 

coordinates. One can see, however, that s2 may be either posi¬ 

tive or negative (or, of course, zero) so that s itself may be 

either real or imaginary. Any interpretation of the physical 

significance of s must, therefore, be a rather formal one. By 

introducing id as a variable one can convert equations (3-19) 

into statements of essentially the same form as the Pythagorean 

theorem. This then paves the way for talking about time as the 

fourth dimension, and so on. But such developments really add 

very little to the basic statements of space-time transformations, 

and we shall not pursue them at this point. We shall note only 

that s2, because it is an invariant, is a useful quantity in the 

characterization of events, and that s2 = 0, in particular, defines 

the world line of a light signal that passes through the space-time 

origin (x = 0, t = 0). 

PROBLEMS 

3-1 Verify that a Lorentz contraction along the direction of motion 
leads to a time difference that is independent of orientation for the 
light beams in a Michelson interferometer with arms of unequal 
length [cf. Eq. (3-2)]. 

3-2 In the Kennedy-Thorndike experiment, as described in the text, 
the difference between the lengths of the two arms of the interferometer 
was about 16 cm. 

(a) If the sun is assumed to be at rest in the ether, the velocity 
of the apparatus at any instant is the vector sum of the earth’s orbital 
velocity v (30 km/sec) and the surface velocity u due to the earth’s 
rotation (about 0.5 km/sec at the equator). Show that the maximum 
fringe shift 5 (= c A//A) that might be expected during the course of 
1 day, according to Eq. (3-2), is given by 

4uv ho - ho 

Evaluate the magnitude of 5 numerically for A = 6 X 10~7 m. 
(b) Astronomical observations suggest that the sun has a velocity 

of about 220 km/sec relative to the center of our galaxy. If the galactic 
center is assumed to be at rest in the ether, what maximum fringe shift 
might the Kennedy-Thorndike experiment have revealed in the course 
of 1 year? 
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At Earth • 

3-3 The figure shows a double-star system with two stars, A and B, 

in circular orbits of the same period T about their center of mass. 
The earth is in the plane defined by these orbits at a distance R of 
many light-years. Let the speed of A in its orbit be u; then at any 
instant it has a velocity vr (= u cos 6) along the line from the double¬ 
star system to the earth. When light emitted from A reaches the earth, 
its observed Doppler shift (change of wavelength of characteristic 
spectral lines) reveals the value of vr at the instant of emission. 

(a) If the speed of light from A to the earth were modified by the 
motion of A, so as to be equal to c + vr, show that the value of vr, as 

inferred from spectroscopic observations on earth, would appear to be 
varying with time in accordance with the following equation if u « c: 

(One might wonder how, if we are uncertain about the nature of light 
and its speed, we can justifiably infer the speed of a star from the 
Doppler shift of its spectral lines. The answer is that we have con¬ 
fidence in such measurements from our experience with the Doppler 
shift observed directly for terrestrial sources with known velocities.) 

(b) For the double-star system Castor C, u = 120 km/sec, 
T = 0.81 day, and R = 48 light-years. Does the above theory predict 
that the observed radial velocity as a function of time should deviate 
appreciably from the equation vr = u sin 2ir(t — R/c)/T1 Experi¬ 
mentally, A. H. Jay and R. F. Sanford, Astrophys. J., 64, 250 (1926), 
found that it did not. (After J. H. Smith, Introduction to Special 

Relativity, Benjamin, New York, 1965.) 

3-4 Given that 

x' = y(x — vt) 

and 

t' = 7 O' - vx/c2) 

derive the equations for a: and t in terms of x' and t'. 

3-5 An event occurs at x' = 60 m, t' = 8 X 10-8 sec in a frame 
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S' (y' = 0, z' = 0). The frame S' has a velocity 3c/5 along the x 
direction with respect to a frame S. The origins of S and S’ coincide 
at / = 0, /' = 0. What are the space-time coordinates of the event 
in S? 

3-6 The space and time coordinates of two events as measured in a 
frame 5 are as follows: 
Event 1: x\ = xo, h = xo/c Or = 0, zi = 0) 
Event 2: X2 = 2xo, /2 = xo/2c CV2 = 0, 22 = 0) 

(a) There exists a frame in which these events occur at the same 
time. Find the velocity of this frame with respect to S. 

(b) What is the value of / at which both events occur in the new 
frame? 

3-7 Frame S’ has a speed v = 0.6c relative to S. Clocks are adjusted 
so that t = t’ = 0 at x — x’ = 0. 

(a) An event occurs in S at / = 2 X 10-7 sec at a point for 
which x = 50 m. At what time does the event occur in S'? 

(b) If a second event occurs at (10 m, 3 X 10-7 sec) in S, what 
is the time interval between the events as measured in S'? 

3-8 Two inertial coordinate systems S and S' move with speed c/2 
with respect to each other. Draw a Minkowski diagram relating these 
two systems. (Let the axes of x and ct for S be at right angles in your 
drawing.) 

(a) Draw calibration hyperbolas that allow you to define unit 
distances along the axes of x, x', ct, and ct'. 

(b) Plot the following point events on the diagram: (1) x = 1, 
ct = 1; (2) x' = 1, ct' = 1; (3) x' = 2, ct' = 0; (4) x = 0, ct = 2. 

(c) From your diagram determine the coordinates in S' (or S) 
corresponding to the above events. 

3-9 (a) Convince yourself that the equations describing a rotation of 
coordinates (x, y) through an angle 9 are 

x' = x cos 9 + y sin 9 

y' = —x sin 9 + y cos 9 

(b) Show that the Lorentz transformation corresponds to a 
rotation of coordinates (x, id) through an angle 9 = tan-1 (//?), where 

0 = v/c. 

A number of other problems involving the use of the Lorentz trans¬ 
formations will be found at the end of Chapter 4. 
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In classical physics it was always assumed that clocks in 

motion and at rest have the same rhythm, that rods in motion 

and at rest have the same length. If the velocity of light is 

the same in all coordinate systems, if the relativity theory is 

valid, then we must sacrifice this assumption. It is difficult 

to get rid of deep-rooted prejudices, but there is no other 

way. 

A. EINSTEIN AND L. INFELD, 

The Evolution of Physics (1938) 



4 
Relativity 

and the measurement 

of lengths 

and time intervals 

in the previous chapters we have sought first to show the need 

for a revision of kinematics and dynamics, and then to present 

the essentials of Einstein’s ideas. We shall now begin our study 

of the application of his theory to a number of dynamical ques¬ 

tions, and a few prefatory remarks may be appropriate. 

In the first encounter with Einstein’s relativity, one may get 

impressions like these: 

1. This is something quite apart from the mechanics of 

Galileo and Newton. 

2. There is a lot of algebraical wizardry—much of it be¬ 

wildering. One can learn to do some of the tricks, but it doesn’t 

make much physical sense. 

Such feelings are very natural. No matter how long one has 

lived with the results of special relativity, there is something very 

nonintuitive about it. None of our everyday, direct experience 

involves speeds greater than 10_6c (riding in a jet aircraft). Even 

an earth satellite passenger only gets to 2 X I0-5c. But rela¬ 

tivity does make good sense, and is not in a separate compart- 
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ment from Galileo-Newton. Keep these thoughts at the back of 

your mind as you study it. And wherever possible, check to see 

how the equations of motion and transformation according to 

special relativity reduce to Newtonian ones for velocities that are 

small compared with c. 

OBSERVERS 

The literature of relativity is full of references to observers, whose 

role is to make judgments on the positions and times at which 

events occur. (We introduced such hypothetical observers our¬ 

selves at one stage in the last chapter.) Almost always the ob¬ 

server is portrayed as being at rest with respect to one or other 

of two frames; by imagining an observer in each frame, one can 

picture an actual process for obtaining two different space-time 

descriptions of the same event. All this seems both harmless and 

reasonable. One may even speculate, with Bishop Berkeley, 

whether it means anything to speak of an event in the absence of 

someone to observe it!1 Nevertheless, the use of this language 

contains certain dangers. It is very important to realize, as 

Einstein in essence pointed out, that the role of an observer is 

simply to record coincidences, i.e., pairs of events which occur 

at the same space-time point. A clock reading at a particular 

point in a given frame of reference is an event in this sense; in¬ 

deed, our concern in this chapter is overwhelmingly with events 

of this kind. The things that we more familiarly think of as 

physical events—e.g., the collision between two objects, or the 

emission of a photon by an atom—are, for our purposes, to be 

regarded as happenings that coincide with events describable as 

readings on clocks. The incessant references to clock readings 

may well seem artificial and somewhat wearisome, but they do 

serve to emphasize an absolutely essential feature—that we are 

dealing with a very explicit problem of measurement. 

To prevent or dispel some possible misconceptions, we add 

the following specific comments. 

1. Although an event is by definition represented by a single 

point in space-time, it may nevertheless leave an enduring record 

of itself. A criminal touches a glass, for example, and leaves a 

fingerprint. The touching of the glass is an event, occurring at a 

unique place and a unique time in a given frame of reference. 

■Of course, physicists in general accept the reality of any event that is in 

principle observable. 
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A second later, even if the glass has not been moved, the finger¬ 

print is at a different point in space-time. But it remains as a 

record that a certain event took place. A still more pertinent 

example would be of a watch that falls onto a concrete floor and 

stops dead. If it is left where it fell, it represents a permanent 

record of the “watch-strikes-floor” event. And an observer, 

coming upon the scene long afterward, can note down the space 

and time coordinates of the event as measured in a reference 

frame defined by the floor (for space coordinates) and by the 

hands of the watch (for time coordinate). 

2. The last remark above should make it clear that an 

observer is not necessarily limited to making measurements in a 

reference frame to which he himself is attached. One can appeal 

to all kinds of familiar experience that embody this fact. For 

example, one is a passenger in a train that shoots through a 

station. On the platform is a sign with an arrow pointing in the 

train’s direction of motion and carrying the words “New York 

10 miles.” Just above the sign is a station clock that reads 

10:53 a.m. As an observer attached to a certain reference frame, 

defined by the train, one can nevertheless record the space-time 

coordinates of an event—“train passes through station”—as 

measured in the relatively moving reference frame of the station 

and the ground to which it is attached.1 Very often, however, 

one will see statements such as the following: “An observer A in 

frame 5 observes that an event occurs at position x and time /; 

the same event is observed to occur at position x' and time t' by 

an observer B in frame S'." What is really being said here is 

just that the event has space-time coordinates (x, t) in one frame 

and (x', t') in the other. But there is conjured up a picture of an 

observer, cloistered in his own particular frame of reference, 

unable to record anything except the measures of position and 

time in that frame. Our example of the passenger in a train shows 

how unnecessarily restrictive this is. The passenger can note not 

only the reading on the station clock but also the reading on his 

own watch. Of course there may be situations in which an ob¬ 

server is limited to making observations on instruments in his 

own inertial frame, but it is still not precluded that he should 

receive information about the results of observations made in 

some other frame. Such communications are indeed a common¬ 

place. 

‘We are treating as negligible the time taken for light to pass from station 

clock to passenger. 
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3. The last and most treacherous aspect of introducing an 

observer attached to a given frame of reference is that one may 

get the impression that this observer has some kind of bird’s-eye 

view of the whole of his reference frame at a given instant. This 

is entirely false. A single observer is not ubiquitous; at a given 

instant he has awareness only of events occurring at his own 

location—e.g., a burst of photons striking his retina. If those 

photons constitute the visual image of a distant object, then 

clearly they represent the object as it was at an earlier time— 

earlier by the transit time of the light itself. An observer at a 

given point may well be able to collect information from which 

he can construct a description of what was happening at a given 

earlier instant in his frame of reference, but he cannot have this 

complete picture at the instant itself. One must be immediately 

on guard if one reads such colloquialisms as:. “An observer 

attached to frame 5 sees the event as happening at position x 

and time t," or “To an observer in frame S it looks as if....” 

Almost always, these statements are simply statements about the 

space-time coordinates of a particular event as established by 

measurements in frame S. If one really means to talk about 

looking or seeing, then an extra feature—the transmission of 

information from one point to another—is involved. 

The purpose of this discussion, then, is to focus the attention 

where it belongs—on the specification of point events according 

to the measures of space and time in given frames of reference. 

If we mention observers, it will, unless otherwise stated, merely 

be in terms of their role as recorders of these measurements. 

POINT EVENTS AND THEIR TRANSFORMATIONS 

The concept of an individual point event, as introduced in Chap¬ 

ter 3, is basic to the successful use of relativistic kinematics. Any 

given event, as we have remarked, is essentially transitory—it is 

represented by a single point in space-time. But the space-time 

coordinates of the event are different as measured in different in¬ 

ertial frames. This is, of course, as true in the Galilean-Newtonian 

scheme as in special relativity. But the Einstein-Lorentz trans¬ 

formations have superseded the Galilean ones, and reduce to 

them, as we have seen, if the value of c can be taken as effectively 

infinite. 

Everything that we do in this chapter is based on the Lorentz 
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transformations. For convenience, therefore, we shall restate 

them in the usual form: 

x1 = y(x - vt) 

V = y 

Z* — Z 

t' = y(t — vx/c2) 

x = y(x' + vt') 

y = y' 

Z — Z* 

t = y{t’ + vx’/c2) 

(4-1) 

with 

y = (1 - v2/c2)~112. 

If an event occurs at the coordinates (x, y, z, t) in S, and at 

(x', y', z', /') in S’, the measurements in S and S' are related as 

above. The left-hand set of equations conveniently describes the 

transformation from S to S', and the right-hand set describes 

the corresponding transformation from S' to S. Given either set 

of transformations, the other set follows. The equations (4-1) 

are purely and simply the recipe for relating two descriptions of 

the same point event. 

If we have two point events, each of them can be represented 

by its space-time coordinates in 5 and/or S'. For one space 

dimension we can draw an x-t graph and mark in the individual 

point events as in Fig. 4-1. And we have: 

Event 1: 

xi' = 7(xi - v/i) xi = T(xx' + vti') | 
ti' = y(ti - vxi/c2) 11 = y(ti' + vxi'/c2)} 

Fig. 4-1 Two 

different point events, 

each describable in 

either S or S'. 
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Event 2: 

X2r = y(X2 - Vt2) X2 - 7(x2' + 0/2') | 

t2' = T(/2 - VX2/C2) 12 = 7(/2' + WC2'/c2)J 

We can then evaluate the separation of the events in space and 

time in either frame. Thus 

X2r — xi' = 7[(*2 — *1) — v(t2 — /1)] (4-2) 

t2' - h' = 7[(r2 - /I) - V(X2 - xx)/c2\ (4-3) 

Example. Frame S' has a speed v = 0.6c relative to S. 

Clocks are adjusted so that t = t' = 0 at x = x’ = 0. Two 

events occur. Event 1 occurs at X] = 10 m, / t = 2 X 10~7 sec 

(j'l = 0, z 1 = 0). Event 2 occurs at x2 = 50 m, t2 — 3 X 

10“7 sec (y2 = 0, z2 = 0). What is the distance between the 

events as measured in S'? 

First, we have 

cVc2 = * 

and hence 

7 = (1 - v2/c2)~112 = f 

Then 

x2' - xi' = f[(50 - 10) - f(3 X 108)(3 - 2)10~7] 

= 27.5 m 

TIME MEASUREMENTS 

Here is where our intuitions chiefly play us false. There is no 

such thing as the time. “The time” is not a metaphysical ab¬ 

straction, it is the reading on a clock. If all measurements were 

made in a single inertial frame, there would be no problem. We 

could synchronize clocks everywhere by a radio-signal technique, 

and that would be that. But applying this technique to two 

inertial frames in relative motion shows us that the synchroniza¬ 

tion of clocks at different places is not absolute; each frame has 

its own criterion of simultaneity. It is from this that we get the 

transformation equations for time measurements: 

t> = y(t - ox/c2) t = 7(/' + vx'/c2) 
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These equations in effect say the following: 

Imagine we have two sets of identical clocks—infinitely many 

in each set—placed along a straight line (the axis of x or x'). 

All the clocks in S are set to read the same time t at what is 

judged to be the same instant in S. All the clocks in S' are simi¬ 

larly synchronized according to the criterion of simultaneity in S'. 

But the S' clocks all have a velocity v (along x) relative to the 

S clocks—and the 5 clocks all have the velocity — v relative to 

the S' clocks. Then: 

1. Measurements made (in S) of the readings of the S' clocks 

at a specified instant t (in S) will show a progressive change of 

reading (/') with position (x) as measured in S. 

But similarly: 

2. Measurements made (in S') of the readings of the S 

clocks at a specified instant t' (in S') will show a progressive 

change of reading (/) with position (x') as measured in S'. 

Note the emphasis on measurement—at a particular point, 

at a particular time, in a particular frame. 

Example. What is the time difference, as measured in S', 

between the same two events considered in the example in the 

previous section? 

Using Eq. (4-3), we have 

= 2.5 X 10-8 sec 

In the above examples we have taken two arbitrary and un¬ 

related point events and shown how to calculate their separation 

in position or time in another reference frame. But now we shall 

take up a more specific and more subtle type of question. How 

does one identify, in some arbitrary frame of reference, a pair of 

point events whose separation in space may justifiably be taken 

as a measure of the length of a particular object, or alternatively 

whose separation in time may justifiably be taken as a measure 

of the time interval between successive ticks of a particular clock? 

It is here that we shall see, in vivid form, the consequences and 

implications of the revised description of events in space-time. 

We are brought face to face with the question of what it really 
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Fig. 4-2 Lorentz 

contraction. The 

spatial interval 

between the ends of 

an object at rest in S 

is measured in S' at 

a time t'. 

means to make a measurement, once the tacit and unsupportable 

assumptions of classical mechanics are stripped away. And from 

this analysis there will emerge the celebrated results that a moving 

object appears to be contracted and that a moving clock appears 

to run slow. 

THE LORENTZ CONTRACTION 

An object at rest in an inertial frame 5 (x, y, and z all constant) is 

continually changing its time coordinate. It is described by an 

infinite succession of space-time events. A point particle at rest 

in an inertial frame S is described in space-time by a line made up 

of all the point events that have the same values of (x, y, z) in S. 

Thus in Fig. 4-2 the two lines parallel to the t axis, and 

representing x = Xi and x = x2, could be the world lines of 

the two ends of a body whose length in 5 is always measured 

as /0: 

lo = X2 — Xi 

Suppose now that we want to define a procedure for finding the 

length of the body by means of measurements made in some other 

frame S'. What should be done? The answer is very straight¬ 

forward: Measure the positions of the two ends of the body at 

the same time t' as judged in S'. Now any line representing 

t' = constant (Fig. 4-2) will intersect the world lines of the ends 

of the body at two points in the x-t diagram. These two point 

events (Pi and P2) have coordinates (xf, t') and (x2', t') with 
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the same f in each case. The length / of the object as measured 

in S' is given by 

l = X2 — X\ 

Now as measured in S these same two point events have x co¬ 

ordinates equal to Xi and x2, respectively, independent of the 

time as measured in S. Thus, using the Lorentz transformations, 

we have 

xi = 7(jti' + vf) 

X2 = y(X2' + V?) 

Therefore, 

X2 — x\ = 7(x2' — Xl') 

Hence 

/ = /0/7 = /o(l - v2/c2)112 (4-4) 

which corresponds exactly to the Fitzgerald-Lorentz contraction 

that was proposed to account for the null result of the Michelson- 

Morley experiment. You must understand precisely what / 

represents. It is the distance between the ends of an object at 

the same instant as judged in the particular frame S’. The cri¬ 

terion of simultaneity is different in any other frame, and hence 

the result of measuring the length will be different, too. This 

may seem strange at first, but according to Einstein’s ideas it is 

inherent in the only kinds of observations that are physically 

meaningful. 

(Note: Do not be misled by a casual inspection of Fig. 4-2, 

which might suggest that /, as represented by the line />1/52, is 

longer than l0, as represented by x2 — X\. Remember the dis¬ 

cussion of Minkowski diagrams in Chapter 3, in which it is 

pointed out that unit distance is represented by lines of different 

length along x and x! in any such diagram. When this is taken 

into account, the measure of / is always less than the measure 

of /(,.) 

TIME DILATION 

As we have already remarked, it is primarily in connection with 

time that our intuitions let us down. The most dramatic mani¬ 

festation of this is in the phenomenon known as time dilation. 
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The time-dilation experiment 
A sequence of pictures from the film “Time Dilation— 

an Experiment with Mu-Mesons," Education Develop¬ 

ment Center, Newton, Massachusetts. The text is 

adapted with permission from the film script. 

We're on top of a mountain, Mt. 

Washington in New Hampshire. We 

shall count the number of mesons 

that arrive here and then we'll go 

down later to sea level and count the 

number that survived to arrive there. 

By comparing these numbers, we 

will show that these moving clocks 

run slow. To start, we need to 

detect these mu mesons. 

(Prof. D. H. Frisch) 

Every time a mu meson passes 

through the plastic scintillator, a 

flash of light is emitted. We detect 

them with the photomultiplier, which 

turns the flashes into electrical 

signals. If a mu meson stops and 

decays in the scintillator it makes a 

second flash, and we have arranged 

the oscilloscope so it shows only 

these decay pulses. The light from 

the decay pulses on the oscilloscope 

screen is picked up by the second 

photomultiplier. The register counts 

the mu mesons that have entered 

the scintillator and decayed. We’re 

also interested in where the decay 

pulses occur on our time scale, and 

the easiest way to record that is 

with the Polaroid camera. [Diagram 

after Frisch and Smith, "Measurement 

of the Relativistic Time-Dilation Using 
Mu-Mesons," Am. J. Phys., 31, 
342(1963).] 

We are measuring the decay times 

of many mesons and plotting them 

on the chart. This particular meson 

lived for 4.85 usee, and on the chart 

we have drawn a line representing 

the length of the decay time of that 
meson. 

Photomultiplier counting decay pulses 



To see the pattern of the distribution 

of decay times we shall need to take 

many hundreds of counts, so we have 

made several 1-hour runs. Here's a 

finished chart based on 568 counts 

that we got during I hour. 

(Prof. J. H. Smith) 

Since we know the mesons travel at 

nearly the speed of light, we can 

relabel the axis in thousands of feet 

instead of in microseconds and then 

ask how many mesons would live to 

reach sea level, 6300ft down. Let 

me put a string across here at 

6.3 nsec or 6300 ft and count how 

many mesons would reach this level. 

There are 27, based on the 

assumption that mu mesons decay 

when they’re in flight in the same 

way as they do when they are at 

rest with respect to us. On this 

basis, if we take our equipment 

down to sea level we expect to find 

27 mesons stopping and dying in the 

plastic scintillator each hour. 

We counted 568 mesons on top of 

Mt. Washington, and now we’ve 

come down to sea level to see how 

many are left. We’re at Cambridge, 

Massachusetts, counting the survivors 

of the mesons incident at the 

6000-ft level. Let's take a full 

hour’s count. Four-o-nine, four ten, 

four eleven,. . . ,four twelve ...— 
that’s the hour. Instead of 27 we 

have 412 mesons left at sea level. 

412 corresponds to only about 

0.7 psec on our meson-decay- 

distribution dock. 0.7 divided by 

6.3 equals These mesons moving 

by us at 0.99 the speed of light keep 

time at y the rate they do when 

they’re at rest with respect to us. 



The essence of the phenomenon is that a lapse of time as recorded 

on a single clock is compared to the results of measurements in a 

reference frame relative to which this clock is moving. In any 

such comparison, it emerges that the elapsed time as measured 

on the single clock is less than the difference between the two 

clock readings that describe the beginning and end of this in¬ 

terval in the other frame. The scale of time as measured by the 

single clock is apparently stretched out; hence the phrase time 

dilation as a description of it. 

To see how this remarkable feature is inherent in special 

relativity, imagine that a single clock is at rest at the point x = x0 

in frame 5. Consider two events corresponding to two different 

readings of the clock: 

Event 1: (xo, o) Event 2: (*o> 12) 

Let us now calculate the time coordinates of these events as mea¬ 

sured in the frame S' that has a velocity v with respect to S. 

Using the Lorentz transformations we have 

t\ = 7(/i - vxo/c2) 

t%' = y(t2 - vxo/c2) 

Therefore 

ti - tl’ = 7(f2 - ?l) 

If the difference t2 — ti is written r0 and 12 — t\ is written t, 

then we have 
TO 

T = 7r° = (1 - £>2/c2)1/2 

Compare Eq. (4-5) with (4-4). We see that the measured length 

of a body is greater in its rest frame than in any other frame, 

whereas the time difference between the events represented by 

two readings of a given clock is less in the rest frame of the clock 

than in any other frame. 

The time-dilation phenomenon loses most of its mystery 

once we recognize that it is basically the consequence of com¬ 

paring successive readings on a given clock with readings on two 

different clocks. Thus the result expressed by Eq. (4-5) involves 

in an essential way not only the rate of a given clock but also the 

procedure for synchronizing different clocks. The measurements 

that we have described require three clocks, two of which are in 

the same inertial frame but at different space coordinates in that 
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frame. We can imagine all three clocks to be exactly alike—e.g., 

quartz oscillators governed by exactly the same dynamic equa¬ 

tions in all inertial frames. If sitting at rest in a given frame they 

would continue to operate at identical rates. Observation of the 

time dilation requires that two of the clocks, relatively at rest 

but separated, be set to record t = 0 at the same instant as mea¬ 

sured in their frame. This then involves Einstein’s definition of 

simultaneity via the exchange of light or radio signals. Our use 

of the Lorentz transformations assumes that these synchroniza¬ 

tions have been carried out, and the time dilation as an observa¬ 

tional phenomenon follows. 

OBSERVATION OF TIME DILATION WITH COSMIC-RAY MESONS 

The very remarkable result represented by Eq. (4-5) cuts the 

ground from under the Galilean transformations. Expressed in 

colloquial terms, it says, “Moving clocks run slow.” But even 

after all the discussion in the last section, one can scarcely help 

asking the question: Is such a bizarre result really true? The 

answer is yes, and we can point to unequivocal evidence for the 

phenomenon in the decay of rapidly moving particles. 

Radioactive decay is one of those many phenomena in 

which individually random processes build up a well-defined 

picture. For any given type of unstable particles, it is possible to 

measure what fraction of a sample of them, first observed at a 

time t0, still survives at a later time t. One can then predict that, 

within the statistical uncertainties of the finite numbers involved, 

the same result will be obtained with any other sample of the 

same type of particles. In this specific, statistical sense, unstable 

particles are a kind of clock; the measured survival fraction 

provides information about the elapsed time. This fact has, of 

course, been widely used in the study of our historic and geologic 

past through measurements on various long-lived isotopes that 

occur in nature. But it is an implication of Eq. (4-5) that if we 

take two groups of unstable particles of the same type, giving 

one group a speed v and letting the other group remain at rest 

with respect to our own frame of reference, the radioactive clock 

represented by the moving group will run slow compared to that 

of the stationary group. In a given time as measured by us, there 

will be fewer decays in the moving group than we should other¬ 

wise expect, and if v is close to c, the effect may be a large one. 
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A classic experiment on this time-dilation phenomenon was 

performed by B. Rossi and D. B. Hall in 1941,1 using the n 

mesons (muons) produced by cosmic rays entering the earth’s 

atmosphere from outer space. More recently a filmed version of 

the same investigation has been made.2 The essential facts re¬ 

lating to the experiment are as follows: 

1. A n meson is a charged particle that decays into an elec¬ 

tron (+ or —), a neutrino (r), and an antineutrino (P): 

+ vi + i>2 

(It should perhaps be mentioned in passing that v\ and P2 are of 

different character, though these neutrinos will not concern us 

here.) 

2. As produced by cosmic rays, the mesons travel pre¬ 

dominantly downward through the earth’s atmosphere with 

speeds very close to c. 

3. With the help of charged-particle detectors one can record 

the arrival of a p meson and, at a measured time later, the pro¬ 

duction of the energetic electron resulting from the decay process. 

Observation of the second stage means that the meson has been 

stopped in the detector, so that the decay of mesons at rest is 

being recorded. 

4. From stage 3 one can build up a statistical record of the 

time intervals between arrival and decay for a large number of 

mesons. 

5. Accepting the result of stage 4, one can predict what 

fraction of a group of mesons should be lost through decay in 

a trip of a given distance (/) and duration (~ l/c) through the 

atmosphere (after making allowance for the removal of mesons 

by collision with atoms of the atmosphere). 

6. Measurements are made of the rate of arrival of muons 

at the top of a mountain and at sea level. The mesons survive 

the downward journey in far greater numbers than one would 

predict from stage 5. 

Let us look at some of the data. Table 4-1 shows a mea¬ 

sured time distribution of the decay of a group of p mesons at 

rest. In the filmed experiment, the counting apparatus recorded 

the arrival of 563 muons/hour (on the average) at an altitude of 

>B. Rossi and D. B. Hall, Phys. Rev., 59, 223 (1941). 

2Film, Time Dilation—An Experiment with p-Mesons by D. H. Frisch and 
J. H. Smith, Education Development Center, Newton, Mass., 1963. See 
also D. H. Frisch and J. H. Smith, Am. J. Phys., 31, 342-355 (1963). 
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TABLE 4-1: MUON DECAY AT REST 

Elapsed time, psec No. of muons surviving 

0 568 
1 373 
2 229 
3 145 
4 99 
5 62 
6 36 
7 17 
8 6 

about 2000 m. At a speed « c, mesons take about 6.5 /zsec to 

reach sea level from this altitude, so that according to Table 4-1 

the meson counting rate would have fallen to about 25 per hour 

at sea level. When the measurement was made, however, the 

result was in excess of 400 counts/hour. According to the clock 

represented by the moving mesons themselves, the journey lasted 

less than 1 /xsec—actually only about 0.7 jusec! A very abbre¬ 

viated pictorial version of the filmed experiment is shown on 

pages 98 and 99. 

The time-dilation factor of about 9 in the above observations 

corresponds, of course, to a particular value of v. Using Eq. (4-5) 

we have 

1 - c2/c2 = (ro/r)2 « 

which gives 

v/c ~ 0.994 

It should perhaps be pointed out that the muons produced by 

cosmic rays have a wide range of energies; the selection of a 

particular value of v/c is achieved by making observations only 

on those mesons that stop within a relatively thin layer of ma¬ 

terial (a plastic scintillator) after having traversed a specified 

large thickness of matter (iron + atmosphere). Muons of less 

than the chosen speed are stopped before they reach the plastic; 

those of higher speed pass right on through, and in both cases 

they go unrecorded, because to be accepted a muon must come to 

rest in the plastic scintillator and decay there. 

As the above experiment shows, the time dilation is not only 

a fact of experience but can become a very large effect for clocks 
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that are moving at speeds close to c with respect to a given 

reference frame. 

ANOTHER INTERPRETATION OF THE TIME-DILATION EXPERIMENT 

In discussing the time-dilation phenomenon as exhibited by n 

mesons, we have considered everything from the standpoint of a 

frame of reference attached to the laboratory. In this frame the 

clock represented by a group of fast-moving mesons has been 

shown to run slow. But what if we try to describe the situation 

according to measurements made in an inertial frame that moves 

along with the mesons? In this frame the mesons are decaying 

at rest. As seen from this other viewpoint (e.g., from one of the 

mesons) the earth and its atmosphere are rushing upward at a 

speed almost equal to c. First a mountaintop flashes past, and 

then, a little later, the ground arrives. Now if frames in uniform 

relative motion are equivalent, the decay data for muons at rest 

in the laboratory (Table 4-1) must be applicable to muons at 

rest in our new frame. But we cannot change the result of the 

experiment, which is that about 75% (rather than 5%) of the 

mesons survive the journey from the mountaintop to sea level. 

How is this apparent inconsistency resolved? The answer is that, 

from the point of view of the moving mesons, the distance be¬ 

tween mountaintop and sea level is strongly contracted. Let us 

make this quantitative. 

Suppose that the vertical distance traveled by the mesons is 

H as measured by ordinary surveying—i.e., in the frame S at¬ 

tached to the earth. The mesons have a speed v down through 

the atmosphere. The duration At of the journey as measured in S 

is H/v (~ H/c). According to the time-dilation equation (4-5) 

the journey takes a time At' = A/(l — v2/c2)112 as measured in 

the meson rest frame S'.1 But this time must also be measurable 

as a certain vertical distance H’ (measured in S') divided by the 

speed with which the atmosphere moves upward past the mesons. 

This speed is v, because it is an essential feature of any relativity 

theory that there should be agreement about the magnitude of 

the relative velocity of two frames; only the sign of the velocity 

'Note that, in deriving Eq. (4-5), the single clock (as represented now by a 
group of mesons) was assumed to be at rest in frame S, rather than in S’, 

but the statement of the essential result is always the same—that the single 
clock records a smaller elapsed time than do the clocks in the other frame. 
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changes according to one’s point of view. Thus we have 

v 

v 

Therefore, 

or 

IT _ AS 

H ~ At 
2, 2.1/2 

(1 - V !c ) 

H' = H( 1 - v2/c2)112 (4-6) 

In other words, the distance between the top of the mountain 

and sea level is modified by the Lorentz contraction [Eq. (4-4)] 

as judged by measurements made in the reference frame of the 

mesons. We see then that a result upon which observers in all 

frames agree—what fraction of a group of unstable particles 

survives between one point event and another—may be attributed 

to time dilation or to Lorentz contraction, according to one’s 

point of view. 

The preceding discussion should help to reemphasize the 

fact that the time dilation is an expression of the definition of 

simultaneity, on the one hand, and of a particular type of mea¬ 

surement, on the other. To describe it by simply saying “Moving 

clocks run slow” may be convenient, but is also somewhat glib 

and can be misleading. For one thing, this statement suggests, 

quite contrary to relativistic ideas, that there is something abso¬ 

lute about motion. And, equally unfortunately, it suggests that 

some essential change occurs in the operation of the clock itself, 

that the physical basis of its operation has somehow been modi¬ 

fied, whereas it is a central feature of relativity theory that just 

the opposite is true—that the operation of the clock as described 

in its own frame of reference is completely unaffected. We must 

recognize that whenever we speak of an object as moving, that 

statement has meaning only with respect to some given frame of 

reference (usually our own). As long as this is borne in mind, it 

is legitimate to speak of moving clocks or moving meter sticks. 

But beware! 

MORE ABOUT TIME AND LENGTH MEASUREMENTS 

In reading these last few sections, you have probably become 

aware that a special interest and importance attaches to a frame 
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of reference that is fixed (at least in our imagination) to a par¬ 

ticular object and always moves with it. This is the rest frame, 

and measurements made in it are called proper. No retreat from 

relativistic ideas is involved here. Although for each observer or 

object there is a uniquely defined rest frame, there is no extrinsic 

reason for preferring one over another. The length of a body as 

measured in its rest frame is called its proper length; we shall 

denote this by /0. Any other measurement of the length is called 

nonproper, and, as we have seen, yields a value less than /0 by a 

factor corresponding to the Lorentz contraction. Using the same 

terminology, we introduce the notion of proper time. This is 

time as measured always at some fixed point in a particular frame 

of reference. The measurement of a time interval between two 

events is nonproper unless both events are recorded in terms of 

the same clock. Referring back again to the muon-decay ex¬ 

periment, we can describe the time-dilation phenomenon as a 

manifestation of the distinction between proper and nonproper 

time intervals. And it will perhaps be instructive to rederive the 
time dilation and length contraction results by applying Ein¬ 

stein’s second postulate (on the universality of c) to some hypo¬ 

thetical but very specific observations involving proper and 

nonproper measurements. 

We shall consider a clock that is at rest in a frame S' and is 

moving at constant velocity with respect to another frame S. 

What sort of clock should it be? Well, it doesn’t matter. If 

different types of clock responded in different ways to uniform 

motion, we should have, right there, a means of detecting such 

motion without reference to the outside world. This would in 

effect be a determination of absolute velocity, and would be at 

variance with the principle of relativity. So we have a free choice, 

and will take a clock whose action is particularly easy to analyze. 

It consists of a box containing two mirrors between which a 

light pulse bounces back and forth, and a dial that records one 

count at each return of the pulse.1 If the distance between 

mirrors (i.e., the proper length) is /0, the interval between suc¬ 

cessive counts is 2l0/c of proper time. Suppose that such a clock 

moves transversely to its length at speed v with respect to some 

other inertial frame S (Fig. 4-3). The path of the light pulse 

with respect to this frame is ABC, and takes a time At as mea- 

'This idealized clock has existed in the literature of relativity for a number 
of years. It bears more than a passing resemblance to one arm of a Michelson 
interferometer. 
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Fig. 4-3 Light-pulse 

clock, used to 

illustrate time 

dilation. 

It 

T 

i 
f •' 1 A ' C • - 

sured by the difference of readings of previously synchronized 

clocks (at A and C) at rest in S. We can argue the invariance of 

transverse lengths just as we did in Chapter 3; thus we have 

AN = NC = vAt/2 

BN = la 

Therefore, 

AB + BC = 2 [/o2 + (p At/2)2]112 

But the speed of light is the same for all observers, which means 

that the total distance traveled by the light pulse (as observed in 

the frame S) must be equal to c At. Hence 

cAt = 2[/02 + {v At/iff2 

(C2 _ j,2)l/2 

But the proper time interval At' as measured on the moving 

clock is just 2/0/c. Therefore 

At 
At' 

(1 - u2/C2)l/2 
(4-5a) 

which represents the time-dilation formula once again. 

In a very similar way we can argue the length contraction 

result. Suppose now we imagine our light-pulse clock to be 

traveling in the direction of its length at speed v with respect to 

some other frame S. Again the proper time for one round trip 
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Combining the last two equations we thus get 

/ = /0(1 - v2/c2)1/2 

which reproduces Eq. (4-4). 

The above analysis is, of course, no more than a description, 

in terms of a concrete example, of the Lorentz transformations 

as they apply to time and length measurements. 

Let us make one last comment about the problem of re¬ 

cording point events that may occur anywhere within a given 

frame of reference. Having set up a space-coordinate grid, we 

must provide a means of measuring the time at which any event 

occurs. The most satisfactory way of doing this is to have time 

recorders (clocks) thickly scattered over the whole grid (say at 

every intersection of the grid lines); otherwise corrections must 

be made for the time taken for information to be relayed from 

a given point on the grid to some central recording point. We 

require, of course, that all the time recorders have been adjusted 

to read t = 0 simultaneously. But why should one always have 

to invoke the Einstein procedure of exchanging light or radio 

signals and allowing for the transit time? Why not simply check 

all the recorders against each other at some central point and 

then carry them to their individual stations? Time dilation is the 

answer. The recorders must themselves be treated as moving 

clocks during their passage from the origin to other locations; 

hence they will be judged to have lost time when compared at 

their destinations with clocks synchronized by the radio-signal 

technique. The error is At — At' and is thus, by Eq. (4-5a), al¬ 

most equal to %v2 At/c2 for v/c « 1. Once brought to rest at its 

new location, a transported clock will proceed to run at the 

normal rate, but its initial error persists. Since At = s/d, where 

s is the distance from the origin to any particular point, the error 

for any particular value of s is proportional to v and can be made 

arbitrarily small if d/c is made small enough. In other words, 

this method of standardizing time over a frame of reference is 

indeed defensible, but only under properly defined conditions. 

A MICHELSON-MORLEY EXPERIMENT WITH LASERS 

It is implicit in the discussion of light-pulse clocks in the preceding 

section that if we had two similar clocks of this type, oriented at 

right angles to one another, they would keep perfect time relative 
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Fig. 4-5 Experi¬ 

mental arrangement 

to compare the 

frequencies of two 

lasers oriented at 

right angles to one 

another—a modern¬ 

ized version of the 

Michelson-Morley 

experiment, as per¬ 

formed by T. S. 

Jaseja it al. 

to one another, and both would appear to go slow to the same 

degree from the standpoint of a frame with respect to which they 

had some velocity. In effect, this is a description of a Michelson 

interferometer and the null result of the Michelson-Morley ex¬ 

periment. But an even more complete analog has been con¬ 

structed with two lasers, in a modern test of the basis of special 

relativity.1 The essentials of the apparatus are shown in Fig. 4-5. 

Although the frequency at which a laser operates must lie 

within the width of an atomic spectral line (in this case in the 

neon atom) the precise frequency is controlled by the speed of 

light and the distance between the mirrors at the two ends of the 

laser.2 Thus the laser is in a very real sense a light-pulse clock. 

In the experiment, the characteristic frequency of both lasers was 

about 3 X 1014cps (with a band width of only about 20cps!). 

*T. S. Jaseja, A. Javan, J. Murray, and C. H. Townes, Phys. Rev., 133, 
A1221 (1964). 

2More specifically, the frequency is equal to nc/2L, where L is the length of 
the laser and n is a large integer. See if you can explain how this condition 
arises. 
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The difference of frequencies (the beat frequency) between the 

two lasers was recorded as the apparatus was rotated through 

90°. No change of beat frequency (beyond what could be ascribed 

to local magnetic fields, etc.) was detectable within the accuracy 

of the measurement (about ±3 kc/sec). This was less than 

1/1000 of the change that one would calculate from an ether- 

wind hypothesis (cf. Chapter 2) and represents the most sensitive 

test yet made of the isotropy of space with respect to the speed 

of light signals. 

RELATIVITY IS TRULY RELATIVE 

Despite the fact that the relativistic transformations are 

founded on the complete equivalence of inertial frames, there 

may still seem to be something paradoxical about the length- 

contraction and time-dilation phenomena. Suppose we have two 

identical meter sticks in relative motion along the direction of 

their length. If I am riding in the rest frame of one of them I 

shall measure the length of the other to be less than 1 m. How, 

then, can I avoid the conclusion that my meter stick appears more 

than 1 m long to an observer in the rest frame of the other stick? 

You need never be perplexed by such a question if you once 

realize that each inertial frame must speak for itself, as it were. 

Observations made in one frame provide a description of events 

from the standpoint of that frame alone. The observations that 

lead A to say that B's meter stick is shrunk are A’s observations; 

the conclusions drawn from those observations are valid for A 

but not for B. B can make his own observations—similar to A's, 

but not the same—and his conclusion is that A's meter stick is 

contracted. Both are correct. There is no contradiction, because 

it is physically impossible for both sets of observations to refer 

to one and the same reference frame. 

This reciprocity can be nicely illustrated with the help of 

Minkowski diagrams. In Fig. 4-6 we show (twice) the represen¬ 

tation of two reference frames S and S' related in the usual way. 

We suppose that there are two objects, each of proper length 

unity, one of which is at rest in S and the other at rest in S'. 

In Fig. 4-6(a) we show the world lines of the ends of the first 

object. Placing the origin at the left end, these world lines are 

the ct axis and the line AQ. Similarly, in Fig. 4-6(b), we show 

the world lines of the ends of the second object, the ct' axis and 
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Fig. 4-6 Use of Minkowski diagrams to demonstrate 

the symmetrical nature of the Lorentz contraction. 

(a) A body of unit length (OA) at rest in S appears to be 

of less than unit length in S'. (b) A body of unit length 

(OB') in S' appears to be of less than unit length in S. 

the line B'R'. Both diagrams show the calibration curve defined 

by the equation 

x2 - (ct)2 = Ox')2 - (cf)2 = 1 

This curve, as we discussed in Chapter 3, intersects the x axis of 

any given reference frame at what corresponds (in that frame) to 

unit distance from the origin. Thus, as shown in both parts of 

Fig. 4-6, the curve passes through the point A on the * axis, such 

that OA = 1, and through the point B' on the x' axis such that 
OB' = 1. 

Now in Fig. 4-6(a) the world line AQ is tangent to the 

calibration hyperbola at A, and in Fig. 4-6(b) the world line 

B'R' is tangent to the calibration hyperbola at B'. The reason for 

this is that, in these Minkowski diagrams, the time axis for any 

frame is parallel to the tangent drawn at the point where the 

calibration hyperbola cuts the corresponding x axis. To see this, 

take the equation of the hyperbola as described in the space and 

time coordinates of S, and find the slope at any point: 

x2 — (ct)2 = 1 

Therefore, 

2x - 2 (ct)~ = 0 
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or 

d{ct) _ x 

dx ct 
(4-7) 

Now evaluate the slope at the point where the axis of x’ cuts the 

hyperbola. This x' axis is the line t' = 0. But by the Lorentz 

transformations, we have 

t’ = 7(t - vx/c2) 

Hence at this point we have 

t = vx/c2 

and so, from Eq. (4-7), we have (at B') 

d(ct) x x c 
-r- = — = —j- = - (4-7a) 
dx ct vx/c v 

But the ct' axis for the frame S' is the line x' = 0, and since, 

again from the Lorentz transformations, we have 

x' = 7(x - vt) 

the equation of the ct' axis in terms of the coordinates x and ct is 

x — — (ct) = 0 
c 

It follows that the slope of this line is given by 

slope of ct’ axis (as measured in S) = ct/x = c/v (4-7b) 

verifying that the construction analyzed above has the correct 

properties. 

With this piece of analytic geometry out of the way, we can 

see that the world line AQ (of the right-hand end of the object 

at rest in S) cuts the x1 axis of S' at a point A' which is less than 

unit distance (OB') from O. But, in an exactly equivalent way, 

the world line B'R' (of the right-hand end of the object at rest 

in S') cuts the x axis of S at the point B, which is less than unit 

distance (OA) from O. This discussion should make it clear that 

the question “Does the Fitzgerald-Lorentz contraction really 

take place?” has no single, unequivocal answer from a rela¬ 

tivistic point of view. The whole emphasis is on defining what 

actual observations we must make if we want to measure the 

length of some object that may be in motion relative to us. And 

the prescription is simply that we measure the positions of its 
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Fig. 4-7 (a) The readings, at 

a given instant in S', of a row 

of clocks that are synchronized 

in S. (,b) Space-time graph of 

this situation. 

ends at the same instant as judged by us. What else could we 

possibly do?1 Thus the contraction, when we observe it, is not 

a property of matter but something inherent in the measuring 

process. 

The complete symmetry of the time dilation can be dis¬ 

cussed in similar terms. For two frames in uniform relative 

motion, it is always a proper time interval, recorded by a single 

clock at rest in one frame, that is compared with an improper 

time interval as obtained from spatially separated clocks in the 

other frame. As a basis for discussing this a little more explicitly, 

suppose that we have five equally spaced clocks at rest in a frame 

S. The clocks are all synchronized according to the S definition 

of simultaneity. But now, suppose this whole system (S) is mov¬ 

ing to the left with speed v as viewed from another frame (S'). 

Then according to the S' criterion of simultaneity, at any given 

instant (/') as measured in S' the clocks show a progressive dif¬ 

ference of readings, as indicated in Fig. 4-7(a). This situation is 

depicted in different terms by means of the space-time graph in 

■Other than the equivalent operation of noting the times at which its two 
ends pass a single fixed point in our frame, given a knowledge of its velocity 
relative to our frame. 
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Fig. 4-7(b). The vertical lines are the world lines of the clocks, 

and the points marked A, B, C, D, and E are the space-time 

coordinates of the clocks at a given time t' in S', specified by a 

line drawn parallel to the x' axis of S'. By the Lorentz trans¬ 

formations, we have 

t' = y(t — vx/c2) 

If the clock C, at the point x = 0 in S, reads /0 at the time t', 

then we have 

t' = yt0 

and, substituting this particular value of t' back into the Lorentz- 

transformation equation, we see that the reading of a clock in S 

at any other value of x is given by 

t(x) = to + vx/c2 (4-8) 

This progressive “error” (as it would be judged to be from the 

standpoint of S') is, of course, very directly related to the radio¬ 

signal procedure for defining simultaneity. If a signal were sent 

out from C, then according to observers in S' the clocks A and B 

are moving away from it, whereas the clocks D and E are running 

to meet it. Being unaware of this, observers attached to S will 

set clocks too far ahead if they are at x > 0 and too far behind 

if they are at x < 0, exactly as stated by Eq. (4-8). 

Now let us come to the time dilation itself and its sym¬ 

metrical nature. Suppose we have two inertial frames, S and S', 

each of which has (according to its own measurements) a set of 

synchronized clocks spaced at equal intervals l0 along the x axis. 

But suppose that one frame has the velocity +u, and the other 

the velocity —v, along x with respect to a third inertial frame, S". 

Since the Lorentz contraction involves v2 only, both sets of 

clocks appear equally spaced to S". To simplify the discussion 

still further, we shall suppose that the progressive error, as 

judged by S'', between successive clocks in 5 or in S' is exactly 

1 sec, as read on the clocks themselves; these errors run in op¬ 

posite directions, of course, because of the oppositely directed 

velocities. Let a record be made of the clock readings of 5 and 

S' (as observed in 5") at those instants when their clocks are 

opposite each other. Figure 4-8 shows the possible results of 

three consecutive observations. If we imagine ourselves to be 

riding along with any one clock in either frame, we shall see that 
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Fig. 4-8 Two rows of separately synchronized clocks 

mocing with equal and opposite velocities with respect to 

a frame S". Diagrams (a), (b), and (c) show readings 

of the clocks as they might be observed at three 

successive instants in S". 

it loses time steadily with respect to the adjacent clocks with 

which its readings are compared. For instance, the clock B' in 

S' is 2 sec ahead of B in (a), it agrees with D in (b), and it is 2 sec 

behind F in (c). But in an exactly similar way, each clock in S 

loses 2 sec with respect to clocks in S' at each stage [e.g., F is 

6 sec ahead of F' in (a), 4 sec ahead of D' in (b), 2 sec ahead of 

B' in (c)]. There is no asymmetry provided we choose cor¬ 

responding observations in the two frames. Relativity is truly 

relative.1 

‘This clear and pictorial argument is taken from W. Rindler, Special Rela¬ 

tivity, Oliver and Boyd, Edinburgh, 1966. The particular values of clock 
readings postulated here require that v = c/ V2 and that / = V2c light-sec. 
See if you can prove this. 
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SPACE-TIME INTERVALS AND CAUSALITY1 

In Chapter 3 we introduced the invariant quantity s2 that can be 

constructed from the space and time coordinates of a given point 

event as measured in any one of a set of inertial frames having 

a common origin in space-time. The relationship, as described 

by Eq. (3-18), was as follows: 

(ct')2 - (x')2 = (ct)2 - (x)2 = s2 

If we had considered two different events, we should find 

agreement among all inertial frames on the value of (As)2, de¬ 

fined as the measure of (c A/)2 — (Ax)2 in any frame. (And, 

since y' = y, z' = z, we could extend this equality to three- 

dimensional space without further ado.) The quantity As, di¬ 

mensionally a distance, is called the space-time interval between 

two events; its value is zero for events connected via a light 

signal. Being an invariant As has a special importance, which 

can be illustrated with the help of space-time graphs. We shall 

not lay much stress on this space-time geometry, but a brief ex¬ 

tension of our earlier discussion of such diagrams will perhaps 

be useful. 

In Fig. 4-9 we show a space-time graph appropriate to one¬ 

dimensional problems. On it are marked two point events P 

and Q, together with the axes (x, cl) and (x', ct') appropriate to 

the different inertial frames. (Note that ct, rather than t, is 

once again used to describe the time variables, so that both co¬ 

ordinates have the dimension of distance.) 

The two lines x = ±c/ represent the world lines of light 

signals passing through the common origin O, and they divide 

the complete space-time into distinct regions. Those regions 

marked “elsewhere” cannot be reached by an observer whose 

world line passes through O, since to get into them from O would 

call for velocities greater than c. If the coordinate scales of x 

and ct are equal, the light lines are at 45° to the coordinate axes, 

as shown. 

The quantity (As)2 whose square root is the interval between 

two events P and Q can be positive, negative, or zero, according as 

c At is greater than, less than, or equal to Ax. A light line connects 

point events between which the space-time interval is zero. If 

c At > Ax, as in Fig. 4-9, it is possible to transform to a reference 

'This section can be omitted without loss of continuity. 
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Fig. 4-9 Division of 

space-time (in a one¬ 

dimensional world) 

into past, future, and 

“elsewhere" from 

the standpoint of an 

observer at O. Also 

showing two events, 

P and Q, between 

which there could be 

a causal connection 

because the interval 

between them is 

“time-tike.” 

Future 
Elsewhere 
Past 

frame whose axis of ct' is parallel to PQ. This means that P and 

Q are events occurring at the same place in S' and separated only 

by some pure time interval. The interval between P and Q is 

said to be time-like in such a case. 

If c At < Ax, one can in a similar way transform to a frame 

in which P and Q are simultaneous events occurring at different 

places. The relation between them is called space-like. To connect 

two events that are separated by a space-like interval would re¬ 

quire a velocity greater than c. Were this possible it would upset 

our ideas about causality in physics. For suppose an event 

P(x, t) could cause an event Q(x + Sx, t + At) through the 

agency of a signal having a velocity u > c. Then the time in¬ 

terval between the events as viewed in some other frame moving 

with velocity v would be given by 

At' = y(At - V Ax/c2) 
(4-9) 

= 7 Ar(l - uv/c2) 

Thus if u > c, we could find a range of values of v (<c) such 

that At' and At were of opposite sign. All inertial observers with 

velocities greater than c2/u could conclude from their observa¬ 

tions that event P was caused by Q, rather than the other way 

round. This, however, would be very unpalatable, for it would 

make the laws of physics appear different to different observers— 

at least as long as we have a basis for knowing the direction in 

which time is advancing, as judged, for example, by our own 

ageing. 
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The above considerations do not, however, prevent us from 

having purely geometric velocities greater than c. For example, 

the spot produced on the moon by a laser beam directed from the 

earth could easily be made to sweep over the moon’s surface at a 

speed much greater than that of light. The distance of the moon 

from the earth is about 3.8 X 108 m. Thus a laser searchlight 

being rotated on its pivot with the quite modest angular velocity 

of 1 rad/sec (one complete revolution in 2w sec) would already 

be enough to produce a spot speed of more than c. But no 

violation of dynamics is involved, for the path of the spot is 

nothing more than the locus of the points of impact of separate 

photons, each of which travels from earth to moon with speed c. 

The supervelocity is not associated with the motion of any ma¬ 

terial object or with the transport of energy or information 

from one point to another over the moon’s surface. 

If we consider a two-dimensional instead of a one-dimen¬ 

sional world, the space-time interval is defined by the equation 

(As)2 = (cAt)2 - (Ax)2 - (A>02 (4-10) 

The events which have a zero space-time interval with respect to 

the origin are thus given by 

x2 + y2 = (c/)2 

This defines a surface that is called the light cone, part of which 

is indicated in Fig. 4-10. A figure such as Fig. 4-9 can then be 

regarded as a section of Fig. 4-10 taken in the xt plane. One 

can, of course, proceed further and write down an equation for 

the light cone in the case that all three directions in ordinary 

space are included. But if you want a picture of this light cone, 

you will have to construct it for yourself! 

Fig. 4-10 Space-time 

diagram of a two- 

dimensional world, showing 

the light cone. 
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PROBLEMS 

4-1 Two events occur at the same place in a certain inertial frame and 

are separated by a time interval of 4 sec. What is the spatial separation 

between these two events in an inertial frame in which the events are 

separated by a time interval of 6 sec? 

4-2 Two events occur at the same time in an inertial frame S and are 

separated by a distance of 1 km along the x axis. What is the time 

difference between these two events as measured in a frame S' moving 

with constant velocity along x and in which their spatial separation is 

measured as 2 km? 

4-3 As the text points out, an observer does not have a complete 

view of what is happening everywhere in his reference frame at a given 

instant; he is aware only of what is happening at his location at that 

instant. Suppose a meter stick pointing in the x direction moves along 

the x axis with speed 0.8c, with its midpoint passing through the 

origin at t = 0. Assume an observer is situated at the point x = 0, 

y = 1 m. 

(a) Where (in the observer’s frame) are the end points of the 

meter stick at t = 0? 

(b) When does the observer see the midpoint pass through the 

origin? 

(c) Where do the end points appear to be at this time? 

[See G. D. Scott and M. R. Viner, Am. J. Phys., 33, 534 (1965), for a 

more detailed discussion of this problem.] 

4-4 Our galaxy is about 105 light-years across, and the most energetic 

particles known have an energy of about 1019 eV. How long would it 

take a proton with this energy to traverse the galaxy as measured in 

the rest frame of 

(a) The galaxy ? 

(b) The particle? 

4-5 A rocketship of proper length /o travels at constant velocity v 

relative to a frame 5 (see the figure). The nose of the ship (A1) passes 

the point A in S at t = t' = 0, and at this instant a light signal is 

sent out from A' to B'. 

(a) When, by rocketship time (t'), does the signal reach the tail 

OB') of the ship ? 

(b) At what time 11, as measured in S, does the signal reach the 

tail (B') of the ship? 

(c) At what time t2, as measured in S, does the tail of the ship 

OB') pass the point A ? 

4-6 A rocketship of length 100 m, traveling at v/c = 0.6, carries a 

radio receiver at its nose. A radio pulse is emitted from a stationary 

space station just as the tail of the rocket passes by. 
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(a) How far from the space station is the nose of the rocket at 

the instant of arrival of the radio signal at the nose? 

(b) By space-station time, what is the time interval between the 

arrival of this signal and its emission from the station? 

(c) What is the time interval according to measurements in the 

rest frame of the rocket? 

4-7 An electron (rest energy 0.51 MeV) is accelerated from rest 

through a voltage drop of 0.13 MV, and then travels at constant 

velocity (1 MV = 106 volts). 

(a) How long does it take for the electron (after it has reached 

its final velocity) to travel between two points 8.4 m apart? 

(b) What is the distance between the points as measured in the 

rest frame of the electron ? 

4-8 A flash of light is emitted at position x\ on the x axis and is ab¬ 

sorbed at position X2 = x\ + /. In a reference frame moving with 

velocity v = /3c along the x axis: 

(a) What is the spatial separation /' between the point of emission 

and the point of absorption of the light? 

(b) How much time elapses between the emission and the absorp¬ 

tion of the light? 

4-9 Two spaceships, each measuring 100 m in its own rest frame, pass 

by each other traveling in opposite directions. Instruments on space¬ 

ship A determine that the front end of spaceship B requires 5.00 X 

10-6 sec to traverse the full length of A. 

(a) What is the relative velocity of the two spaceships? 

(b) A clock in the front end of B reads exactly one o’clock as it 

passes by the front end of A. What will the clock read as it passes by 

the rear end of A ? 

4-10 Charged 7r mesons (pions) are produced in high-energy collisions 

between protons and neutrons. They decay in their own rest frame 

according to the law 

N(t) = N0(2)~t/T 

where Tis the half-life and is equal to 2 X 10-8 sec. A burst of pions 

is produced at the target of an accelerator, and it is observed that 

two-thirds of them survive at a distance of 30 m from the target. What 

is the energy of the pions ? (Express it in terms of the rest-mass energy.) 

4-11 A beam of unstable K+ mesons, traveling at a speed of cV3/2, 

passes through two counters 9 m apart. The particles suffer a negligible 

loss of speed and energy in passing through the counters but give 

electrical pulses that can be counted. It is observed that 1000 counts 

are recorded in the first counter and 250 in the second. Assuming that 

this whole decrease is due to decay of the particles in flight, what is 

their half-lifers measured in their own rest frame? 
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4-12 At noon a rocketship passes the earth with a velocity 0.8c. 

Observers on the ship and on earth agree that it is noon. 

(a) At 12:30 p.m. as read by a rocketship clock, the ship passes 

an interplanetary navigational station that is fixed relative to the earth 

and whose clocks read earth time. What time is it at the station? 

(b) How far from earth (in earth coordinates) is the station? 

(c) At 12:30 p.m. rocketship time the ship reports by radio back 

to earth. When (by earth time) does the earth receive the signal? 

(d) The station on earth replies immediately. When (by rocket 

time) is the reply received? 

For maximum benefit, solve this problem from the standpoint of 

both the earth and the rocket frames. 

(After J. H. Smith, Introduction to Special Relativity, Benjamin, New 

York, 1965.) 

4-13 (a) In the time-dilation experiment with /^-mesons described in 

the text a layer of iron 2.5 ft high was used to slow down the mesons. 

It is nearly correct to say that ^-mesons traveling through iron suffer 

an average energy loss of 0.118moc2/cm, whatever their energy. If 

the energy lost by these particles in the scintillator itself is between 

zero and 0.45/woc2, what was the initial velocity of the /x-mesons that 

stopped (and decayed) in the scintillator? 

(b) If the /x-mesons all traveled in a direction making an angle 6 

with the vertical, what would be the ratio of the number of mesons 

decaying per hour in the scintillator on top of Mt. Washington to the 

number decaying in the scintillator at sea level? Show that if Y 5»> 1, 

your answer is independent of 6. In the actual experiment it was 

assumed that 6 = 0 for all ^-mesons; estimate the error introduced by 

this assumption if in fact the detecting system accepts mesons at any 

angle up to d = 45°. 

4-14 Two rockets are connected by an inextensible string of proper 

length lo■ At time t = 0 the rockets start out from rest with exactly 

equal constant accelerations as measured in S. At time t = t\ the 

acceleration ceases and the rockets coast with equal constant velocities 

as measured in 5. Why did the string break ? [For further discussion 

see articles by E. Dewan and M. Beran, Am. J. Phys., 27, 517 (1959), 

and by E. Dewan, Am. J. Phys., 31, 383 (1963).] 

4-15 A flash of light is emitted at point O and is later reabsorbed at 

point P (see the figure). In frame 5, the line OP has a length / and makes 

an angle 6 with the x axis. In a frame S' moving relative to S with a 

constant velocity v along the x axis: 

(a) How much time t' elapses between emission and absorption 

of the light? 

(b) What is the spatial separation /' between the point of emission 

and the point of absorption of the light? 
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4-16 A rod of proper length lo is at rest in a frame S'. It lies in the 

(x\ y') plane and makes an angle of sin-1 (§) with the x' axis. If S' 

moves with constant velocity v parallel to the x axis of another frame S: 

(a) What must be the value of v if, as measured in S, the rod is 

at 45° to the x axis? 

(b) What is the length of the rod as measured in S under these 

conditions? 

4-17 A rod of proper length L points along the x axis but moves in a 

direction making an angle of 45° to this axis (see the figure). A plat¬ 

form, also parallel to the x axis, lies in the rod’s way, but a slit of 

proper length 1.1L has been cut out 

of it so that the rod can easily fit 

through if it travels at a nonrela- 

1^5° _x tivistic speed. What happens if its 

i Rod speed is 0.9c? Analyze the problem 

from both reference frames. 

Slit 
Platform 

4-18 Below are the space and time coordinates of two pairs of events. 

Find the space-time interval between events 1 and 2 in each case. 

Taking each case in turn, answer the following questions: 

(a) Could there be a causal connection between the two events? 

(b) Is there a frame in which the two events would be recorded 

as simultaneous? If so, what is this frame? 

Event 1 Event 2 

Xl y\ Zl t\ X2 y 2 Z2 t2 

Case A 0.3 in 0.5 m 0 2 X 10-9 sec 0.4 m 0.7 m 0 3 X 10~9 sec 

Case B 0.7 in 0.5 m 0 5 X 10-9 sec 0.4 m 0.6 m 0 4 X 10~9 sec 

4-19 Consider a star S surrounded by a spherical shell of dust of 

radius R (see the figure). Assume that any light emitted by the star is 

first absorbed and then reradiated by the shell of dust. The star 

suddenly undergoes a nova-type explosion and sends out a very in¬ 

tense pulse of light. An observer on earth (very far away) sees light 

reradiated from A before he sees light coming from P. The total effect 

would be of an expanding ring of light with its center at A. Show that 

the rate (dr/dt) at which the radius 

of this ring appears to increase is 

given by 

dr/dt = c cot 6 

and so is greater than c for 6 < 45°. 

What about causality? 
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The velocity of light forms the upper limit of velocities for all 

material bodies ... The simple mechanical law of adding and 

subtracting velocities is no longer valid or, more precisely, is 

only approximately valid for small velocities, but not for 

those near the velocity of light. The number expressing the 

velocity of light appears explicitly in the Lorentz 

transformation, and plays the role of a limiting case, 

like the infinite velocity in classical mechanics. 

A. EINSTEIN AND L. INFELD, 

The Evolution of Physics (1938) 



5 
Relativistic 

kinematics 

TRANSFORMATION OF VELOCITIES 

once we have the Lorentz transformations for distance and time, 

it is a straightforward matter to consider the time derivatives of 

displacements as measured in two different inertial frames. Al¬ 

though we are in general concerned with motion in three-di¬ 

mensional space, most of the results of interest can be developed 

in terms of motion in two dimensions. That is because (as we 

pointed out in Chapter 3) there is only one uniquely defined 

direction involved—the direction of relative motion of the in¬ 

ertial frames. This is an axis of symmetry, and any displacement 

can be analyzed into components along and transverse to it. 

Logically one should, perhaps, embody a reminder of this fact 

in the equations by using cylindrical coordinates, in which a 

vector is characterized by its component along the symmetry 

axis, its component transverse to this axis, and one angle—the 

azimuth—which is the angle between some fixed plane through 

the axis and the plane defined by the axis and the vector. In 

many instances the azimuth angle would then not appear in the 

results. Tradition has, however, enshrined the practice of using 

Cartesian coordinates, with y and z axes perpendicular to each 

other and to the direction (x) of relative motion of the reference 

frames. We shall therefore continue, as we have begun, with an 

acceptance of this coordinate representation. But the trans¬ 

formations appropriate to the x and y directions really tell the 

whole story and the transformations for the z direction can be 
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constructed, usually by inspection, from those for the y direction. 

Therefore, unless there is special reason to do otherwise, we shall 

treat vectors as though they have x and y components only. 

We shall begin, then, with the following basic equations: 

a: = 7(x' + vt') 

y = y' (5-D 

/ = 7 (t' + vx'/c2) 

with 7(c) = (1 — u2/c2)_1/2. 

Suppose that an object has velocity components ux', uj as 

measured in S'. By the definition of velocity we have 

Ux' = dx'/dt', Uy = dy'/dt'. 

What will be the relation between these and the components of 

the velocity of the object as measured in S, relative to which S' 

itself has the velocity u? 

We have from equations (5-1), by differentiation, 

dx = 7 (ux + o) dt' 

dy = uy' dt' 

dt = 7(1 + vux'/c2) dt' 

Hence 

dx 

Uz~Yt~ 

Ux' + V , Ux - V 
(5-2) 

1 + VUx'/c2 Uz 1 — VUx/c2 

H 

■sis 
H V/7 , _ Uy/7 

(5-3) 
1 + VUx'/c2 “ 1 — VUx/c2 

In Eqs. (5-2) and (5-3) we have added, for completeness, the 

expressions for ux' and uv' in terms of measurements made in S. 

Let us consider Eq. (5-2) first. It represents the relativistic law 

of addition for two velocities that are in the same direction. If 

both ux and v are small compared to c, the term vux’/c2 is a 

quantity of the second order of smallness and can in most cir¬ 

cumstances be ignored compared to unity. In this case we get 

back to the straightforward addition of velocities that works 

perfectly well for the kinematics of everyday life. But if either 

or both of the combining velocities should be comparable with c, 
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we have results that are distinctively different from the Galilean 

kinematics. 

Suppose, for example, that ux = v = 0.5c so that we have 

ux' + v = c. Then 

0.5c + 0.5c 4 _ 

Ul ~ T + (0.5)2 “ 5 c 

The combined velocity is less, by 20%, than we would have 

calculated by direct addition. Let us study this velocity-addition 

law in more generality by writing the combining velocities as 

fractions of c: 

v = die 

Ux' = 02 c 

Then 

Ux _ „ _ 01 + 02 

C 1 + d 102 
(5-4) 

As long as the values of di and d2 are restricted to being less than 

unity (i.e., each of the combining velocities less than c) then the 

value of uz/c is also less than unity. A simple way of seeing this 

is to consider the value of 1 — fi: 

1 — d = 1 - 
01 + 02 

1 + dld2 

(1 - dlXl - 02) 
1 + 0102 

If di and d2 are both positive fractions, corresponding to the 

addition of velocities in the same direction, then the right side 

of the above equation clearly lies between 1 and 0; hence d lies 

between 0 and 1. 

RADIATION FROM A RAPIDLY MOVING SOURCE 

In the particular case that one of the combining velocities—say 

ux—is equal to c, giving f)2 = 1, then Eq. (5-4) yields the result 

ux = c for any value of v. This then includes the result that light 

emitted from a source that is moving relative to the laboratory 

still has the speed c, no matter how fast the source moves. 

As we mentioned in Chapter 3, this result, although an 

essential feature of Einstein’s formulation of special relativity, 
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did not receive a convincing demonstration until much later. 

One crucial reason is that the propagation of light through a 

medium (even a transparent one) involves a continual process of 

absorption of the incident light and its reemission as secondary 

radiation by the medium—and it takes only a very small thick¬ 

ness of matter to bring about this replacement. Thus, for example, 

with visible light, a thickness of about 10-5 cm of glass or 0.1 mm 

of air at atmospheric pressure is almost enough to erase any 

possible memory, as it were, of the motion of the original source. 

This phenomenon, known as extinction (even though it may not 

involve any appreciable loss of intensity in the light beam), has 

invalidated some of the observations (e.g., the apparent motions 

of binary stars, already referred to in Chapter 3) that were at 

first believed to provide confirmation of Einstein’s second pos¬ 

tulate—the invariance of c. We shall now describe two ex¬ 

periments which do not appear to be vitiated by the extinction 

phenomenon.1 

One experiment2 (done, appropriately, at the Michelson 

Laboratory of the U.S. Navy) made use of visible light, in an 

apparatus very reminiscent of that for the Fizeau experiment 

(Chapter 2). Light from a primary source S (Fig. 5-1) passed 

via a mirror M to a beam splitter P so as to form two beams 

traveling in opposite directions around the path defined by 

mirrors Mx — M4. Two thin glass plates, P\ and P2, were 

mounted on a rotor pivoted at the point O so that Px and P2 

had equal and opposite velocities of magnitude v (= ur). The 

primary source 5 was pulsed at the rotation frequency in such a 

way that no light circulated around the mirrors except during a 

few microseconds each revolution while Px and P2 were in the 

positions shown. The whole apparatus was in a moderate 

vacuum (about 0.02 mm Hg). 

If the light receives any velocity associated with motion of its 

source, then one would expect the modified speed to apply to the 

counterclockwise beam along PXMX and P2M4, and to the clock¬ 

wise beam along PXM2 and P2P. Because of the extinction 

effect, any modification of speed must be eliminated in the 

process of reflection at any of the fixed mirrors. It follows that 

the modified speed, if it occurs, applies over a total distance 

/ (= MxM2 = M4P) for each beam. If we suppose that a frac- 

‘Their validity has been carefully considered in an article entitled “Evidence 
against Emission Theories,” by J. G. Fox, Am. J. Phys., 33, 1 (1965). 

2G. C. Babcock and T. G. Bergman, J. Opt. Soc. Am., 54, 147 (1964). 
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Fig. 5-1 (a) Sche¬ 

matic diagram of ap¬ 

paratus of Babcock and 

Bergman for testing 

dependence of light 

velocity on source 

velocity. Can you 

suggest a possible 

reason why the extra 

mirror M3 is present ? 

(Consider the paths 

of light rays 

traveling along 

Mt and MtP at 

different distances 

from the rotation 

axis O.) (b) Fringe 

patterns obtained 

(upper) with rotor 

stationary and (lower) 

rotating at 2800 rpm. 

No detectable shift 

occurs. (Photos 

courtesy of G. C. 

Babcock, Michelson 

Laboratory, Naval 

Weapons Center, 

China Lake, Calif.) 

tion / of v is given to the light, the time difference between the 

beams is given by 

At = —-_ 
c — fv c + fv c2 

The fringe shift corresponding to this would be c Al/\, and by 

reversing the direction of rotation one could double the effect. 

Hence we should have 

. 4Iv 
Fringe shift on reversal — — / 

AC 
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In the experiment, the following values were used: 

/ = 2.76 m, X = 4.74 X 10-7 m, 

v = 37.5 m/sec (0 = 1.25 X 10-7) 

For / = 1 this would have given a shift of 2.9 fringes. Careful 

analysis of the actual fringe patterns revealed no significant shift 

as large as 0.02 fringe. Thus it could be concluded that the mov¬ 

ing glass plates gave less than 1% of their velocity to the light 

leaving them. 

An even more convincing test of the velocity-addition 

theorem when one of the combining velocities is c was that pro¬ 

vided by the experiment we cited in Chapter 3, on the radiation 

emitted from neutral ir mesons in flight.1 The neutral ir meson 

(or pion) may disintegrate into two photons: 

ir° —> Yi + 72 

The pions were produced by the impact of protons of nearly 

20 GeV energy on stationary nucleons in a target of a proton 

synchrotron.2 This created pions with energies of more than 

6 GeV, having 7 > 45, v/c > 0.99975. (For a discussion of such 

particle creation processes, see Chapters 6 and 7.) These neutral 

pions have an extremely short mean life—only about 2 X 

10_16sec—so that even with the benefit of their large time- 

dilation factor, they travel an almost negligible distance (a few 

microns) before decaying. Decay photons emerging at about 6° 

to the proton beam were collimated, separated from charged 

particles by a magnet, and then timed very accurately over a 

flight path AB in air of about 30 m (see Fig. 5-2).3 The timing 

was made possible by the fact that the protons in the accelerator 

came in very brief bursts, and so therefore did the decay photons. 

The time delay could then be measured between a pulse due to 

protons at the target and a pulse caused by the photons in the 

detector D. The change of this delay as the detector was moved 

from A to B could thus be recorded. The final result (already 

quoted in Chapter 3) was that the photon velocity was (2.9977 ± 

‘Alvager et al., loc. cit. [For a fuller account by the same authors, together 

with J. M. Bailey, see Arkiv Fysik, 31, 145 (1966).] 

2At CERN, the European nuclear research center in Geneva. 

3The extinction effect was not important in this case, because for these very 

energetic photons the extinction length is about 5 km of air at atmospheric 

pressure. 
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Target 

Fig. 5-2 Schematic diagram of experiment of Alcoger 

et al. to measure speed of y rays from decay of jr° 

mesons. 

0.0004) X 108 m/sec, which ruled out any augmentation of the 

photon velocity by more than about 10-4 of the velocity of the 

source (in this case the moving pions). Thus the relativistic law 

of velocity addition is upheld under very severe conditions, and 

the failure of the Galilean law is incontrovertible. 

LIGHT IN A MOVING MEDIUM: THE DRAG COEFFICIENT 

We have just considered two cases in which one of the two com¬ 

bining velocities was the velocity of light in free space. But now 

let us apply the relativistic velocity-addition law to the problem 

of light traveling within a moving medium, as in the Fizeau 

experiment. We shall then see that the famous drag coefficient 

emerges as a natural consequence of the new kinematics. 

Here is how it works. The passage of light through a medium 

such as glass or water is characterized by a refractive index n, 

and the velocity of the light relative to the medium is c/n. Sup¬ 

pose that such a medium is moving with speed v parallel to the 

direction of the light. What light velocity V does a stationary 

observer find? Using Eq. (5-2) we have 

v = c/n + v 
1 + v/nc 
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Now for v « c we can expand this expression in powers of o/c 

and ignore all powers higher than the first: 

« -(l + — - —) 
n \ c ncj 

Therefore, 

(5-« 

Thus the relativistic combination of velocities leads, without any 

extra assumptions, to precisely the result that Fresnel and the 

other ether theorists had to explain in terms of a partial dragging 

of the light by the medium. Prior to the development of Einstein’s 

kinematics, the phenomenon was a mysterious one and the ex¬ 

planations of it were (as we have seen in Chapter 2) very artificial. 

To Einstein it was a famous and important result, which played 

a significant part in guiding him toward special relativity theory. 

TRANSVERSE MOTIONS; STELLAR ABERRATION 

Let us now consider the transformation of a velocity component 

perpendicular to the direction of relative motion of two reference 

frames. We have, by Eq. (5-3), 

Uy/y 

u 1 — vux/c2 

If we put ux = 0 (a special case), we get 

uv — 77 (provided ux = 0) (5-6) 

This apparent reduction of a transverse velocity component is 

essentially a manifestation of time dilation, as may be seen by 

considering the derivation of Eq. (5-3) from (5-1). There is 

really nothing more to be said. But if we consider the general 

form of the transverse velocity transformation, Eq. (5-3), and 

combine it with the longitudinal transformation, Eq. (5-2), we 

have a means of relating the directions of a given rectilinear 

motion as described in two different frames. One interesting 
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Fig. 5-3 Stellar aberration, (a) A stationary telescope 

aligned on a star. (A) A Moving telescope aligned on 

the same star. 

application of this result is to the problem of stellar aberration. 

Regarding light as being composed of a rain of photons, we 

can easily calculate the change in apparent direction of a distant 

object such as a star. Let frame S be the rest frame of the sun, 

and let S' be the frame of the earth, traveling with the orbital 

velocity v relative to S' (Fig. 5-3). Suppose the direction of a 

star, measured from the plane of the earth’s orbit, is 9 in frame S 

and 9' in S'. Then we have ux = — c cos 9, uy = —c sin 9 for 

the velocity components of the incoming photons as measured 

in S. Hence, using Eqs. (5-2) and (5-3), we have 

, _ — (c cos 9 + v) 

<x 1 + v cos 9/c 

, _ —c sin 9 

'v 7(1 + v cos 9/c) 
(5-7) 

The combination of the components ux’ and uy’ is, of course, a 

velocity of the invariant magnitude c. (Verify this for yourself.) 

Its direction 9' as observed in S' is most simply expressed by 

—ux' cos 9 + v/c 
cos 9' = —- =  -1— 

c 1 + v cos 9/c 

As so often in relativistic calculations, it is convenient to denote 

the ratio v/c by /S, so that we can write 

cos 9' 
cos 9 + ft 

1 + 8 cos 9 
(5-8) 

Now, the earth in its motion around the sun carries us through a 

whole succession of reference frames, each of which can be re¬ 

garded as approximately inertial during a short period of time. 

Since the orbital velocity of the earth is about 30 km/sec, the 

value of d in Eq. (5-8) is about 10-4. An excellent approxima¬ 

tion to Eq. (5-8) in this case is the following: 

cos 9’ ~ (cos 9 + 8)(1 — 8 cos 9) 

i.e., 

cos 9’ « cos 9 + 8 sin2 9 

133 Transverse motions; stellar aberration 

(5-9) 



We introduce the angle of aberration, a, so that 

6' = 6 - a 

Then 

cos 6' = cos 6 cos a + sin 6 sin a 

But a is a very small angle, so that we have, very nearly, cos a - 1 

and sin a = a, and hence 

cos 6' ~ cos 6 + a sin 8 (5-10) 

Comparing Eqs. (5-9) and (5-10), we see that 

a«/3sin# (5-11) 

which reproduces the approximate statement of the aberration 

as given in Chapter 2 in the discussion of Bradley’s observations. 

THE DOPPLER EFFECT 

Some of the most important observations in atomic physics in¬ 

volve measurements on the radiation from moving atoms or 

nuclei. The apparent frequency (or quantum energy) of emitted 

radiation depends on the relative motion of source and observer. 

The term Doppler effect embraces all aspects of this phenomenon 

whereby the observed frequency or wavelength of a periodic 

disturbance is modified. The effect is named after Christian 

Doppler, who enunciated the essential principles of it in 1842, 

in connection with atomic spectroscopy. 

Everyone is familiar with the acoustical Doppler effect— 

e.g., in the sudden drop in pitch of a siren on a car as the car 

passes by. In this case there is an identifiable medium—the air— 

and we have physically distinct situations according to whether 

it is the source or the observer (or both) that moves with respect 

to the medium. With light in vacuum there is no such distinction, 

so the discussion of the phenomenon is in a way simpler. It may 

be useful, nevertheless, to begin with a reminder of the acoustical 

Doppler effect. 

Consider a one-dimensional problem in which a source S 

and a receiver R are moving along the same line (Fig. 5-4). 

Relative to the air, let the speeds of S and R be ui and u2, re¬ 

spectively. Let the source be emitting a signal of frequency v 

and period r(= \/v). To make the discussion especially simple. 
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(a) Pj 

t=oO\ 1-)0^ 
R 

(b) 

t — T 
u2 

Fig. 5-4 Doppler effect for radiation from a moving 

source, (a) A first pulse leaves the source at t = 0. 

{b) A second pulse leaves the source at t — t. The 

motion of the source is such that the distance between 

pulses is less than if the source were stationary. 

we shall assume that the signal is in the form of very brief pulses 

separated by r. Each pulse travels through the air at the speed 

of sound, w. Suppose that a pulse is emitted at time t = 0, 

and a second pulse P2att = r, as shown. During the time r the 

pulse P i travels a distance wt and the source S moves a distance 

uit. Thus the distance between P\ and P2, which we can call 

the effective wavelength X' (although strictly this term should be 

reserved for pure sine waves), is given by 

X' = (w — ui)t = w ~-Ul 
v 

The speed of the pulses relative to R is w — w2, so that the time 

interval between the arrival of Pi and P2 at R is given by r', 

where 

, _ X' _ w — u\ 

W — U2 Kw — «2) 

The reciprocal of r' defines an effective frequency v'.1 

have the result 

. w — 1/2 1 — m/w 
p = p-= p- 

w — U1 1 — Ul/w 

Thus we 

(5-12) 

For a given relative velocity v between R and S, the value of v' 

‘The concept of frequency, like wavelength, applies strictly only to sine 

waves. Any other periodic signal with a repetition time r has a frequency 

spectrum that in general may contain all harmonics of the frequency 1/t. 
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still depends on the individual values of Ui and u2. Two cases 

of special interest are: 

(a) Stationary source, moving receiver: | 

(«i = 0, «2 = v) v' = v(l — v/w) = v(l — j3) 

(b) Moving source, stationary receiver: 

. v v 
(«i = -v, u2 = 0) 

\ + v/w 1 + /3 

} (5-13) 

The source and receiver are moving away from one another in 

both cases and the observed frequency is lower than the source 

frequency. Replacing v by — v gives the corresponding results 

when source and receiver are approaching one another. 

With this preliminary let us now turn to the corresponding 

problem in special relativity. We suppose that a source (e.g., a 

radar pulse transmitter) is located at the origin of reference 

frame S, and that an observer moves relative to S at velocity v, 

so that he is at rest in S'. Each emitted pulse travels with speed c. 

Suppose a first pulse is sent out at t = 0 when the observer is at 

the position x = x0, and suppose the (n + l)th pulse is sent 

out at t = m. This will have covered n periods of vibration, so 

that the measured frequency of the source in S' is v = 1/r. 

To find what the observer records, we shall draw a graph 

of x versus t and identify the events representing the arrival of 

the first and last pulses at himself (see Fig. 5-5). In the language 

of such space-time diagrams, we locate the intersections of the 

world line of the observer with the world lines of the pulses. 

Let these intersections occur at (*i, 11) and (x2, t2) as measured 

in S'. Then 

= ct i = xo + vt i 

X2 = c(t 2 — nr) = xo + vt 2 

Therefore, 

t2 ~ h 

x2 — XI 

CtlT 

C — V 

vcnr 

c — v 

But, as measured in S', 

t2’ - ti’ = y[(t2 - tl) - V{X2 - xi)/c2] 

= 7 
V 

C2 

cnr \ 

- «y 

vcnr 

c 

(by the Lorentz 

transformation) 
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Fig. 5-5 Space-time 

diagram to illustrate 

the processes of emis¬ 

sion and reception of 

light signals when 

source and receiver are 

in relative motion. 

Since this time interval covers n periods of the signal as received 

by the observer, the apparent period r' is given by 

= ^ * t (putting v/c = 0) 

= 7(1 + 0)r 

But 

7 = a - p2)-1'2 

Therefore, 

or, in terms of frequencies, 

(5-14) 

(5-15) 

Had S' been moving toward S, rather than away from S, 

the signs in numerator and denominator of the radical would 

have been interchanged. If you compare Eq. (5-15) with the 

acoustical Doppler formulas of Eq. (5-13), you will see that the 

relativistic result is a kind of unification of the moving-source 

and moving-observer results and can be set equal to either if 
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terms higher than the first order are ignored. But the relativistic 

result has a special symmetry that the previous result lacks. 

The most dramatic manifestation of this form of the Doppler 

effect, for relative motion of source and observer along the line 

joining them, is the famous red shift of distant galaxies. The 

spectrum of a complete galaxy, being a synthesis from all the 

different radiating objects in it, is close to being a continuous 

smear. But astrophysicists are able to distinguish a few very 

prominent dark lines—i.e., narrow gaps in the otherwise con¬ 

tinuous spectrum—produced as the escaping radiation passes 

through cooler gases or vapors and undergoes selective absorp¬ 

tion before leaving the galaxy. Two such lines in particular, the 

so-called H and K absorption lines of ionized calcium, can be 

distinguished even when all other characteristic features have 

been lost. (Ionized calcium atoms present an extraordinarily high 

cross section for light of these particular wavelengths.) They lie 

near the extreme violet end of the spectrum for a stationary 

source, but have been observed drastically shifted toward the 

region of longer wavelengths for certain very distant galaxies. 

A selection of galactic spectra with progressively increasing 

Doppler shifts is shown on pages 140 and 141. In each photo¬ 

graph the spectrum of the galaxy appears as a rather ill-defined 

horizontal streak, interrupted by the H and K absorption gaps. 

A line spectrum from a laboratory source is recorded above and 

below each galactic spectrum for purposes of comparison. In 

the last photograph, for example, the H and K. absorption lines 

are found to be shifted to a wavelength of about 4750 A, as com¬ 

pared to about 3940 A for a stationary source. This is a very 

large increase of wavelength—nearly 25%. Using Eq. (5-14) we 

have 

Therefore, 

(A'/A)2 ~ 1 

(X'/X)2 + 1 
(5-16) 

Putting X'/X ~ 4750/3940 = 1.21, we find 

/S = 
0.46 

2.46 
0.2 

Therefore, 

v = 0.2c « 6 X 107 m/sec 
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It is by now a familiar story how the distinguished astronomer 

Edwin Hubble, who did so much to advance the study of the 

depths of Space outside our own galaxy, established the existence 

of a linear relation between the velocity of recession and the 

distance for remote galaxies. Part (B) of the illustration on pages 

140 and 141 shows the data of Part (A) plotted so as to exhibit 

this spectacular relationship, which is known as Hubble's law. 

The determination of the galactic distances is much less direct 

and definite than the measurement of the Doppler shifts and 

ultimately involves such profound questions as whether space on 

the grand scale is describable by Euclidean geometry. But this is 

beyond the scope of our immediate topic, and if you want further 

details you should hunt them up for yourself in a book on 

astronomy.1 It must suffice here to lay the chief emphasis on 

the Doppler shifts themselves. 

MORE ABOUT DOPPLER EFFECTS 

As the first Sputnik sped around the earth it emitted a radio¬ 

frequency signal that was picked up by many tracking stations. 

Figure 5-6 shows one example of such observations.2 When the 

satellite is very far away, approaching or receding, it gives maxi¬ 

mum or minimum Doppler frequency-shifts corresponding to 

the one-dimensional problem we have been discussing. But the 

switch from augmented to diminished frequency is not instan¬ 

taneous, as it would be if the moving object passed right through 

the position of the observer. Instead, it follows a smooth curve 

that can yield information about the altitude as well as the speed 

of the moving source. Let us analyze a situation of this kind. 

In Fig. 5-7 we show the path of a satellite passing at a 

height h above an observation point O. We shall regard the path 

as being an approximation to a horizontal straight line, so that 

the satellite’s position can be described by the following equations: 

x = vt y = h 

The time t = 0 marks the instant when the satellite is directly 

overhead. 

We suppose the satellite to have a transmitter that sends out 

■See, for example, F. Hoyle, Frontiers of Astronomy, Harper, New York, 

1955, or his beautiful, more recent book, Astronomy, Doubleday, New York, 

1962. 

2R. R. Brown et al. (M.I.T. Lincoln Lab.), Proc. IRE45, 1552 (1957). 
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The red shift of distant galaxies 

A. EVIDENCE OF AN EXPANDING UNIVERSE3 

It is extremely difficult to photograph the spectra of distant galaxies. They 

are so faint that they cannot be observed visually, even with the largest tele¬ 

scopes. The correct aim of the telescope must therefore be calculated from the 

nebula's position in a photograph. Then the telescope has to be kept directed 

at the object for hours to photograph its spectrum which, in the end, may only 

measure 2 by I mm. The spectrum obtained is like that of an average star 

(,spectral type G)—continuous, with absorption lines. But the absorption lines 

are very indistinct, forming as they do the average for all objects in the entire 

galaxy. By 1917 Slipher had managed to photograph the spectra of 15 spiral 

nebulae. He was surprised to find that the absorption lines in 13 of these spectra 

were displaced toward the red. This would suggest that the galaxies were moving 

away from us. From the shift observed it was possible to calculate that they 

were receding at 400 miles/sec (640 km/sec), on the average. In 1919 Hubble 

discovered that all external galaxies whose spectra had been photographed 

and distances determined are moving away from us at velocities proportional 

to their distances from us. This was once more very amply proved within the 

next few years by the observational material which Humason amassed using 

the Hooker and Hale telescopes. (Photographs from the Mount Wilson and 

Palomar Observatories.) 

aComments from Ernst and De Vries, Atlas of the Universe, Thomas Nelson, 

London, 1961. 
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pulses at a frequency v in its own rest system. Consider two 

successive pulses that are emitted from the positions Xy and x2 

as shown, at times we can denote ty and t2. The time interval r 

between the pulses is 1 /v in the inertial frame of the satellite but 

is greater than this by the time-dilation factor y in the observer’s 

frame. Thus we have 

t2 — n = ?t = y/v 

The pulses take times ry/c and r2/c respectively to reach O, so 

that the measured time separation r' between them is given by 

t' = t2 + r2/c - ty - ry/c 

= Yt - (ry — r2)/c 

Now if the distance x2 — xy is very much less than ry (i.e., if 

the satellite travels a very small distance during one cycle of its 

transmitter signals), we can with good accuracy put 

ry — r2 ~ (x2 — xi)cos6 

= v7t cos 6 
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where 6 is the angular elevation of the satellite at the instant fj 

as measured in the frame of reference attached to the ground. 

Thus we have 

t' = 7t(1 — v cos t/c) 

But 1 /r' represents the received frequency v' of the signals under 

these conditions. Hence 

i.e.. 
7(1 — jScos 6) 

t (1 - ff2)1/2 

V 1 — 0 cos 6 
(5-17) 

If we wanted to proceed to construct (or analyze) the graph of 

observed frequency versus time (Fig. 5-6), we would make use of 

the relationship 

C°s6 (f,2 + v2t2)l/2 
(5-18) 

We did not really need special relativity to discuss the 

Doppler effect of Sputnik 1, because the measurements involved 

were not sensitive to the differences of the order of ft2—i.e., a 

few parts in 1010—between relativistic and nonrelativistic be¬ 

havior in this case. It is true that, with the atomic clocks now 

available as frequency standards, such subtle changes are by no 

means beyond the reach of detection. But we shall not pursue 

this topic. The satellite problem simply provided a nice frame¬ 

work within which to develop the theory of Doppler effects for 

a source moving in an arbitrary direction. The really important 

applications of the Doppler formula as expressed by Eq. (5-17) 

are in the analysis of radiation from swiftly moving atoms, nuclei, 

or other subatomic particles. And as one example of this, we 

Fig. 5-7 Diagram 

for consideration of 

Doppler effect with 

signals emitted at 

angle 6 to line of 

motion of source. 
Ground 0 
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shall now discuss a classic experiment that exploited the Doppler 

effect to provide convincing quantitative evidence of the time- 

dilation phenomenon. 

DOPPLER EFFECT AND TIME DILATION 

Back in 1907 Einstein had suggested that a measurement might 

be made of the apparent wavelength of light emitted at right 

angles to their direction of motion by rapidly moving atoms. 

According to Eq. (5-17), the radiation traveling at an angle 6 

to the direction of a moving source has an observed frequency 

given by 

AO) 
(1 - p2)112 

v 1 — 0 cos 0 

This defines an apparent wavelength given by 

X'W = X 0 “ Pcos V (5-19) 

The angle 9 is the direction as measured by the observer. If we 

set 9 = ir/2, the apparent wavelength is larger than X by just the 

factor 7. Now if a proton accelerated through about 5 kV picks 

up an electron, it forms a hydrogen atom moving at a speed of 

about 106 m/sec, so that 0 « 1/300 and 7 — 1 « 5 X 10~6. 

This value of 7 — 1 represents the fractional change of measured 

wavelength for any light emitted sideways by the moving atom 

and for a line in the visible spectrum at 5000 A would mean an 

absolute wavelength shift of about 0.025 A. This is extremely 

small but might in principle be measurable. There is, however, a 

very serious practical difficulty. If one is to establish the existence 

of this transverse, or second-order, Doppler effect (as it is vari¬ 

ously called), one must be sure that the angle 9 is precisely v/2. 

A deviation from it by the amount 0 radians (equal to about 0.2° 

in this example) would cause the first-order Doppler factor (that 

is, 1 — /S cos 9) to swamp the effect being sought. 

In 1938 H. E. Ives and G. R. Stilwell published the results 

of a beautiful experiment in which this difficulty was avoided.1 

Instead of trying to observe light emitted transversely to the 

direction of motion of the atoms, they made measurements on 

the radiation emitted forward or backward with respect to this 

"H. E. Ives and G. R. Stilwell, J. Opt. Soc. Am., 28, 215-226 (1938). 
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direction. From Eq. (5-19) we have 

X'(7T) = X 

X'(0) = X 

1 + 0 
(1 - 02)1/2 - 0/ 

1 + 0 A - A 
-*\T+e) 

1/2 

1/2 (5-20) 

(1 _ 02)1/2 

Let us develop these expressions in ascending powers of 0: 

X'Or) = X(1 + 0 + £02 + • • •) 

X'(0) = X(1 - 0 + *02 + • • •) 

To the approximation that 02 is negligible compared to 1, each 

of these wavelengths differs from X by the first-order Doppler 

shift 0X—i.e., by about 15 A for the hypothetical case we con¬ 

sidered above. But when second-order effects are taken into 

account, one sees that the average of and X'(0) differs from 

X; it is, in fact, greater than X by precisely the time-dilation factor 

7, i.e., by a wavelength shift equal to (7 — 1)X, as may be seen 

by direct substitution in Eq. (5-19). Making use of approxima¬ 

tions where convenient, we can put 

First-order effect: 

AXj = 0X = - X (5.21a) 
c 

Second-order effect: 

1 2 1 
AX2 = (7 - 1)X « V- X « ^ (AXi)2 (5.21b) 

In the absence of time dilation the value of AX2 would be precisely 

zero [cf. Eq. (5-19) itself]; thus the measurement makes for a 

clear choice between the two versions of kinematics. 

In the experiment, a hydrogen discharge tube was the source 

of ions of H2+ and H3+. (Free protons, H+, were not observed 

in any appreciable amount, being quickly captured by hydrogen 

molecules to form the H3+ ions.) These ions, after acceleration 

through an accurately defined voltage, could (by neutralization 

plus dissociation) produce neutral but still excited hydrogen 

atoms whose velocities were in the ratio y/3 : \fl, according to 

whether they came from H2 or H3. These atoms then emitted 

the characteristic Balmer lines of atomic hydrogen. Extremely 

careful observations were made, using a diffraction grating and 
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photographic recording, of the apparent wavelength of one par¬ 

ticular line—the second line of the Balmer series, designated Hp. 

(It is turquoise blue and has a wavelength of about 4861 A.) 
Figure 5-8(a) shows an example of the results obtained, with 

the unmodified line in the center and the Doppler-shifted lines 

for three different voltages on either side of it. 

To a casual glance the Doppler shifts appear quite sym¬ 

metrical with respect to the central line, but detailed measurement 

of the original photographs revealed a systematic displacement of 

the average wavelength with velocity as given by Eq. (5-2lb). 

Figure 5-8(b) is a reproduction of the graph that Ives and Stilwell 

gave in their paper to show the parabolic relation between first- 

order and second-order shifts. The experiment, quite apart from 

the intrinsic interest and importance of its result, is an object 

lesson in what can be done by skilled investigators pushing a 

technique to its limit. 

It is a curious sidelight on this experiment that its authors 

did not (even as late as 1938) accept special relativity theory. In 

their view the results simply demonstrated that a moving clock 

runs slow (as Larmor and Lorentz had suggested) by just the 

same factor, and in just as real a way, as a moving rod was 

believed to be contracted if it pointed along its direction of 

absolute motion through the ether. Old and cherished ideas die 
hard. 
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A NEW SEARCH FOR THE ETHER 

When Maxwell wrote his letter in 1879 that stimulated Michelson 

into looking for an ether drift, there was no conceivable way of 

doing a laboratory experiment that would reveal effects pro¬ 

portional to the first power of v/c. This was because any prac¬ 

ticable experiment, such as Michelson’s own, necessarily involved 

light rays turning back along their tracks, and as we have seen 

(Chapter 2) this reduced the observable effects to terms of the 

order of v2/c2 The development of the molecular-beam maser 

changed this and made possible a first-order experiment that 

placed far lower limits on v than had been achieved before. 

The experiment, carried out by Cedarholm and Townes,1 

involved the comparison of the frequencies of two similar molec¬ 

ular-beam masers with their beams traveling in opposite direc¬ 

tions. In very rough terms, the theory of the experiment from 

the standpoint of an ether theory is something like the following. 

The molecular-beam maser is somewhat like the light-pulse clock 

that we discussed in Chapter 4. It has a characteristic frequency 

defined by the time taken for radiation to bounce back and forth 

across it. (It is what is called a resonant cavity.) The radiation 

is supplied by a beam of molecules (excited ammonia molecules) 

traveling longitudinally relative to the cavity at some speed u [see 

Fig. 5-9(a)]. The dimensions of the cavity are adjusted so that 

‘J. P. Cedarholm and C. H. Townes, Nature, 184, 1350-1351 (1959). See 
also J. P. Cedarholm et al., Pltys. Rev. Letters, 1, 342-343 (1958). 

Fig. 5-9 Diagrams 

to illustrate emission 

of radiation from 

molecules in a 

molecular-beam 

maser that is assumed 

to be (a) at rest in 

the ether, (b) moving 

relative to the ether. (a) (b) 
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its natural frequency is about the same as that of the molecular 

radiation, but the really sharp definition of frequency is provided 

by the molecules, not by the cavity itself.1 

Now if the cavity is at rest in the ether, the pulses of radiation 

travel exactly perpendicular to the direction of molecular motion, 

as in Fig. 5-9(a). If, however, the apparatus has a velocity v, 

parallel to the molecular beam, through the ether, then the 

radiation, to stay with the cavity, as it were, must be emitted 

at an angle w/2 — 6 with respect to the molecular beam [Fig. 

5-9(b)]. The size of the angle 8 is v/c. This same picture applies 

to the light emitted along the transverse arm of the Michelson 

interferometer, if we view things from the ether frame rather 

than from the laboratory. But with the molecular-beam maser 

we now have a new effect. Since the radiation is provided by 

molecules moving with some velocity u relative to the cavity, 

these molecules act as sources having a velocity component ud 

along the direction of the rays. This means a Doppler shift such 

that 

Av _ ud _ uv 

v c c2 
(5-22) 

The frequency shift is proportional to the first power of u. If, 

then, one takes two similar masers, set up with their axes parallel 

but with their molecular beams traveling in opposite directions 

(both, however, parallel to v), then the frequency of one is raised 

and that of the other is lowered. By mixing their outputs one can 

produce a beat frequency /given by 

/ = (2 uo/c2)v 

Turning the whole system through 180° will exchange the roles 

of the two masers and hence give a net frequency shift equal to 

(4uv/c2)v. The resonant frequency v for an ammonia maser is 

about 2.4 X 1010 sec-1, and u is a typical thermal velocity of 

about 600 m/sec. Thus we have 

, 1.2 X 103 X 2.4 X 1010 _i 
/R5-9X1P-0SCC 

~ 3 X 10-4usec-1 

where v is the velocity through the ether, in meters per second. 

Putting v equal to the earth’s orbital velocity (3 X 104 m/sec) 

‘Note that this is just the opposite of the behavior of the He/Ne lasers used 

in the modernized Michelson-Morley experiment (cf. Chapter 4). For these 

it was the cavity dimensions, not the atoms, that defined the precise frequency. 
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Fig. 5-10 Diurnal variation of the change in relative 

frequency caused by 180° rotation of a pair of ammonia 

beam masers (Cedarholm and Townes). The beams of 

the two masers were oppositely directed and in an east- 

west direction. The constant change of about 1.08 cps 

is primarily due to local magnetic fields. Lengths of 

lines indicate probable errors on the individual points. 

would thus give a beat frequency of about 10 cps and a net beat 

frequency swing of 20 cps during a complete rotation of the ap¬ 

paratus. Figure 5-10 shows a sample of the actual results, as the 

apparatus was carried through 360° by the rotation of the earth. 

The measurements were repeated at intervals throughout a year, 

and at no time was a frequency shift of more than 0.02 cps de¬ 

tected. This puts an upper limit of about 30 m/sec (or about 

1/1000 of the earth’s orbital speed) on the value of v, and may 

well be regarded as delivering the coup de grace to the fixed-ether 

hypothesis. 

LOOKING AT MOVING CLOCKS AND OTHER OBJECTS 

It may be appropriate here to set down a few remarks about 

the precise content of the statement that “moving clocks run 

slow.” Whenever you see or hear this statement, you should 

conjure up in your mind a picture (artificial though it may be) 

of an inertial reference frame thickly sown with identical clocks 

that have all been synchronized by the radio-signal technique. 

As the moving clock travels through this territory, its reading at 

any particular point is compared with a stationary clock at that 

same point. From such observations it is concluded, as we saw 

in Chapter 4, that the moving clock is indeed running slow by the 

factor (1 — v2/c2)112. 

But what if we look at a moving clock—really look at it. 
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that is—for example, by watching it through a pair of field 

glasses? This is not at all the same thing. It means that we are 

standing at one particular point of a reference frame, and that 

what we see at the time t on our clock represents the reading on 

the moving clock at some earlier time t — r/c, where r was the 

distance of that clock from us at the earlier time. The clock can 

be thought of as sending out signals at equal intervals r of its 

own proper time, which are not seen by us until later. But this 

is none other than the Doppler effect! At some instant, as mea¬ 

sured by us, we see the distant clock through our binoculars and 

it shows a reading t. At a time r' later, again as measured by us, 

we see the moving clock reading / + r. If the clock is moving 

along a straight line passing through our own position, the re¬ 

lation between r' and r is precisely that of the one-dimensional 

Doppler effect : 

If the clock is moving toward us, the value of /3 in this formula 

is negative, so that r' < r and the moving clock will appear to 

be running fast, not slow. If the clock were a collection of moving 

atoms emitting a characteristic spectral line, we should see the 

light as blue-shifted. 

The moral of this is simply that, as always in relativity, it is 

essential to be completely specific about what particular process 

or event is being described. The word “observe” must not be 

used loosely or uncritically with respect to events taking place at 

distant points. The words “see” and “look” must at once be 

recognized as involving the finite time of transit for light. It 

seems almost incredible in retrospect, but for over 50 years after 

Einstein’s 1905 paper there was an unchallenged belief among 

physicists that the Lorentz contraction of a moving body could 

be seen or photographed. The difference between this kind of 

observation and the observations of which the Lorentz trans¬ 

formations are the expression was not critically considered until, 

in 1959, J. Terrell showed that the Lorentz contraction is not in 

general perceived as such by the eye.1 When proper account is 

taken of the time for light to travel to a stationary observer's eye 

from different parts of a moving object, one recognizes that the 

'J. Terrell, Phys. Rev., 116, 1041-1045 (1959). See also V. F. Weisskopf, 

Phys. Today, 13, 24-27 (1960), and G. D. Scott and M. R. Viner, Am. J. 

Phys., 33, 534 (1965). 
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appropriate instants at which light must start out from various 

points of the body must be different, and hence are associated 

with different positions of the body as a whole. The general 

result of this is that the body appears distorted. There is, how¬ 

ever, a special result of great interest. If the moving object is 

far enough away to subtend a very small solid angle (so that to 

some approximation the rays of light reaching the observer are 

all parallel), it develops that the object appears as it would at 

rest, but rotated. One would thus see a moving meter stick as 

foreshortened, but only to the extent that corresponded to its 

apparent rotation, without involving any contraction as such. We 

shall analyze this phenomenon for a rectangular object moving 

parallel to one of its edges. 

Consider a rectangular board, of length L0 and width W0 as 

measured in its own rest frame, moving at speed v parallel to the 

edges of length L0 [see Fig. 5-11(a)], Let it be viewed in its own 

Fig. 5-11 (a) A rectangular object mooing at speed o 

parallel to x. (b) The apparent positions of the corners 

A, B, C as recorded at a gioen instant by a distant 

observer looking in the y direction in the plane of the 

object, (c) It is inferred that the object is rotated in its 

own plane, but not Lorentz-contracted. 
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plane in a direction perpendicular to v. Then light from the rear 

corner (A0) has to travel a distance JV'0 more than that from the 

near corner (B0), and thus, to arrive at the viewer’s eye at the 

same instant, it must start out earlier by a time At equal to W0/c. 

In this time, however, the board has moved a distance Ax equal 

to v At, that is, vW0/c, and its ends are at the points marked Bi 

and Ci at the instant of departure of light from these ends. Be¬ 

cause of the Lorentz contraction, the near edge of the board 

appears to be of length L0/y; since its ends Bi and Ci are equi¬ 

distant from the observer, no correction for the difference of 

transmission times is involved. Thus, at a given instant, the 

observer gets a foreshortened view of the edge AB and a Lorentz- 

contracted view of the edge BC. This is indicated in Fig. 5-11(b), 

and we have the relationships 

A'B' = vWo/c B'C' = L0(l - v2/c2)u2 

But now, if we consider the board at rest, but turned through 

an angle 0 as shown in Fig. 5-11(c), the projected lengths of its 

edges are W0 sin 0 and L0 cos 0. These correspond precisely to 

the above values of A'B' and B'C' if we set sin 0 = v/c. 

Do not conclude from the above discussion that the Lorentz 

contraction is thereby liquidated—but realize that it does refer 

to measurements of a particular kind that are not the same as 

“just looking.” This misconception, which must have made 

every physicist blush a little when it was pointed out, came di¬ 

rectly out of a failure to analyze the seeing process in terms of 

the particular point events involved. Looking through your 

binoculars at a moving clock, you might very well in some cir¬ 

cumstances see it running fast, but you would not necessarily 

see it as contracted. Be warned, therefore, and look with a cold 

and critical eye upon glib statements involving relativity theory. 

ACCELERATED MOTIONS 

For the sake of completeness, we shall develop here the expres¬ 

sions for accelerations as measured in different inertial frames. 

The results are somewhat complicated, and there is no point in 

trying to remember them unless relativistic kinematics is your 

livelihood. Even then, you would probably find special and simple 

cases more useful than the general results. 

One other introductory comment is perhaps worth making. 
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Because Einstein developed a whole new theory (his general 

theory of relativity, published in 1916) based upon the dynamical 

equivalence of an accelerated laboratory and a laboratory in a 

gravitational field, it is sometimes stated or implied that special 

relativity is not competent to deal with accelerated motions. 

This is a misconception. We can meaningfully discuss a dis¬ 

placement and all its time derivatives within the context of the 

Lorentz transformations. 

Just as with the velocity transformations, it is very advan¬ 

tageous to distinguish between longitudinal and transverse ac¬ 

celerations with respect to the direction of relative motion of two 

inertial frames. We have 

= Uz + V 

Z 1 + Vlix'/c2 

uy'/y 
y 1 + Vlix'/c2 

t = 7 (/' + ox’/c2) 

(5-2) 

(5-3) 

(5-1) 

Therefore, 

dux I tix' + v v dux | 
Ux ~ 1 + VUx'/c2 ~ L(1 + VUx'/c2)2 J 

(Remember that v = constant for the purpose of this calculation.) 

Collecting the terms together, we have 

(1 — v2/c2)dux' dux' 
dUz ~ (1 + VUx’/c2)2 ~ 72(1 + VUx'/c2)2 

Also, from Eq. (5-1), 

dt = y(dt' + v dx'/c2) = 7(1 + vux'/c2) dt' 

Therefore, 

ax = 
dux dux'/dt' 

dt 73(1 + vuz'/c2)2 

l.e., 

ax = 

Ox 

73(1 + vux'/c2^ 

Similarly, from Eq. (5-3) we have 

*,-“d- 

(5-24) 

Uy' v dux' 
7(1 + VUx'/c2) ~ 7(1 + VUx'/c2)2 C2 
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Therefore, 

duy dUy'/dt' Uy v dux' /dt' 

“ ~di - 72(1 + vux'/c2)2 72(1 + vux'/ciyi c2 

= aj_{vuy /c2)ax' 

72(1 + I>«x7c2)2 72(1 + mj !crf '■ 

Only if Uy = 0 or ax' = 0 (or both) does the expression for ay 

become relatively simple. But for these cases we have 

Special case (uu' — 0 or ax' = 0): 

= g»L 
v 72(1 + VUx'/c2)2 

(5-26) 

It may be noted that if a body is instantaneously at rest in 

S' (ux' = Uy = 0), its acceleration components as measured in S 

are diminished by the factors 73 for the x direction and 72 for 

the y direction, as compared with the accelerations measured in 

the instantaneous rest frame S'. 

The main lesson to be learned from the above calculations is 

that acceleration is a quantity of limited and questionable value 

in special relativity. Not only is it not an invariant, but the 

expressions for it are in general cumbersome, and moreover its 

different components transform in different ways. Certainly the 

proud position that it holds in Newtonian dynamics has no 

counterpart here. 

THE TWINS 

Of all the supposed paradoxes engendered by relativity theory, 

the twin paradox (or clock paradox) is the most famous and has 

been the most controversial. It asserts that if one clock remains 

at rest in an inertial frame, and another, initially agreeing with 

it, is taken off on any sort of path and finally brought back to its 

starting point, the second clock will have lost time as compared 

with the first. In today’s parlance, the astronaut will end up by 

becoming younger than his twin brother. This result, which was 

stated by Einstein in his very first relativity paper (1905), became 

the subject of a raging controversy in the physics literature dur¬ 

ing the years 1957-1959, after preliminary skirmishes dating back 
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to 1939. One must hope that the question has been finally 

settled.1 

The “paradox” consists in a one-sidedness that appears to 

flout the basic tenets of relativity. Both the traveler and the stay- 

at-home agree that the traveler has aged less than the other. It 

is an entertaining application of the theory to see just why this 

should be so, and we shall give two similar but slightly different 

ways of analyzing the problem. 

First, we define the traveler’s journey in its simplest pos¬ 

sible form, as composed of three distinctive events separated by 

periods of steady motion: 

1. The traveler {A) starts off, reaching a constant velocity v 

within a negligibly short time. 

2. After journeying for a while, the traveler suddenly re¬ 

verses his velocity. 

3. The traveler arrives back at his starting point, and stops. 

Method 1. Suppose the observer on earth (B) records a total 

time T between events 1 and 3. He can infer that the outward 

and return journeys each took a time T/2. He (B) knows about 

time dilation, so he must be quite ready to concede that the 

traveler (A) records an elapsed time of only T/27 for each leg of 

the trip. Thus he should not be surprised that A measures the 

total journey time as T/7. We can reinforce this conclusion 

through the Lorentz contraction. Event 2 occurs at a distance 

L (= vT/2) from the starting point. But A, just as soon as his 

acceleration up to v is completed, is in a frame in which the dis¬ 

tance is only Z./7. Again we have a reduced value for the flight 

time. Both these calculations are correct. 

But is it not possible to regard B as the traveler and A as 

the stay-at-home? No! Why not? Because there isn’t symmetry 

between the two. Event 2 is the decisive one. During it, A 

switches from one inertial frame to another, while nothing at all 

happens to B. At his turnaround A experiences an acceleration 

that he can detect by various means. (Of course, if A is to start 

and stop at B's position, he undergoes accelerations at events 1 

and 3 also.) He feels inertial forces acting on him. He sees stars! 

Moreover, if he has a telescope, he can see a sudden shift in the 

apparent position of those stars, owing to the v/c aberration 

'See, for example, Selected Reprints on Special Relativity Theory, American 

Institute of Physics, New York, 1963; 9 of its 17 reprints are papers devoted 

to the clock paradox. 
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effects. There is no paradox, and the asymmetrical aging is 

real.1 

Method 2. This method bases itself on the Doppler effect, 

and is perhaps even more convincing than method 1, of which it 

is, in effect, an elaboration. We imagine that each person sends 

equally spaced time signals (of his own proper time) to the other. 

The cumulative counts of time signals for the whole trip are then 

compared. Suppose each person is transmitting/pulses per unit 

time. As A travels away from B, each observer will receive the 

other’s signals at the reduced rate /' = /[(l — /3)/(l + /3)]1/2. 

But for how long? Here is the asymmetry. As soon as A reverses, 

he begins to receive signals from B at the enhanced rate f" = 

/[(l + d)/(l — d)]1/2- With B it is quite different. The last 
signal sent by A before he reverses does not reach B until a time 

L/c later. Thus for much more than one-half the total time B 

is recording /l’s signals at the lower rate /'. Only in the latter 

stages does B receive pulses at the higher rate f". By drawing 

up a table (see Table 5-1) we can show that each observer re¬ 

ceives as many signals as the other sends between start and finish 

of the trip. They agree to disagree about their respective measures 

of the total time. (It is worth noting in Table 5-1 that although 

B was not present at the space-time event representing A’s turn¬ 

around, he is able to infer from his observations that it took 

place at the midmoment of the journey time as measured by A, 

since equal numbers of signals are received by B at the two dif¬ 

ferent rates/' and/".) 

Even in the face of this analysis, it may still seem strange 

that two clocks, each of which has been reading proper time, 

should be brought together at the same spot and yet exhibit 

disagreement. After all, the separation in space-time between 

starting and finishing points is an invariant, can be verified by 

both observers, and is purely time-like. However, the summa¬ 

tion of elementary space-time intervals ds along an actual path 

is, in Hermann Bondi’s words, “a route-dependent quantity.” 

We have always 

ds2 = c2 dt2 — dx2 = (c2 dt'2 — dx'2) 

‘Note, though, that we are appealing to the reality of /fs acceleration, and 

to the observability of the inertial forces associated with it. Would such 

effects as the twin paradox exist if the framework of fixed stars and distant 

galaxies were not there? Most physicists would say no. Our ultimate defini¬ 

tion of an inertial frame may indeed be that it is a frame having zero ac¬ 

celeration with respect to the matter of the universe at large. 
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Fig. 5-12 Twin paradox. 

World lines of the astronaut 

(ODF) and his brother (OCF) 

in which the astronaut goes to 

a distant point and back 

again, traveling always at 

constant speed except at the 

start (O), turnaround (D), 

and finish (F). 

But the integral of ds along the world line OCF of the stay-at- 

home (Fig. 5-12) is not the same as along the world-line ODF of 

the traveler (both as seen in the rest frame of E). 

Along OCF, dx = 0 at every stage. Therefore, 

,3 ,3 

/ ds = cl dt = cT 
J1 path OCF J1 path OCF 

(5-27) 

Along OD, dx = v dt. Therefore, 

C ds = (C2 - v2)112 f2 d, = cT/2y 
J1 path OD J1 path OD 

Along DF, dx = — v dt, so 

f3 
/ 2 path DF 

also. Hence 

/; ds = cT/2y 

/ ds = cT/y (5-28) 

We see that Eqs. (5-27) and (5-28) embody the by-now-familiar 

asymmetry. The result need not seem so very strange; it has an 

analogy in ordinary geometry. Just consider the case of two 

hikers, who decide to walk from a town P to a town Q. But one 

goes via village C and the other goes via village D. By consulting 

a map they agree on the value of the spatial interval between P 

and Q. But if they carry pedometers they will end up with dif¬ 

ferent readings of the distance traversed in going from P to Q 
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via C and D, respectively. The line integral of ds from P to Q 

depends on the path, and you would have a hard job to get a 

scientific wrangle going as to whether or why this should be so. 

One last remark. It has been argued by some writers that 

an explanation of the twin paradox must involve the use of 

general relativity. The basis of this view is that the phenomena 

in an accelerated reference frame (including the behavior of a 

clock attached to such a frame) are regarded in general relativity 

as being indistinguishable, over a limited region of space, from 

the phenomena in a frame immersed in a gravitational field. This 

has been interpreted as meaning that it is impossible to talk about 

the behavior of accelerated clocks without using general relativity. 

Certainly the initial formulation of special relativity, although it 

leads to explicit statements about the rates of clocks moving at 

constant velocities, does not contain any obvious generalizations 

about accelerated clocks. And, as Bondi has remarked, not all 

accelerated clocks behave the same way. The clock consisting 

of a human pulse, for example, will certainly stop altogether if 

exposed to an acceleration of lOOOg—in fact, a mere lOOg would 

probably be lethal—whereas a nuclear clock can stand an ac¬ 

celeration of 101 Gg without exhibiting any change of rate. Never¬ 

theless, for any clock that is not damaged by the acceleration, 

the effects of a trip can be calculated without bringing in the 

notions of equivalent gravitational fields. Special relativity is 

quite adequate to the job of predicting the time lost. It had 

better be, for (as Bondi has facetiously put it) “it is obvious that 

no theory denying the observability of acceleration could survive 

a car trip on a bumpy road.” And special relativity has amply 

proved itself to be a more durable theory than this. 

PROBLEMS 

5-1 Consider three galaxies A, B, and C. An observer in A measures 
the velocities of C and B and finds they are moving in opposite di- 

__B A C__ rections each with a speed of 0.7c relative to him. Thus, according to 
0.7c 0.7c measurements in his frame, the distance between them is increasing 

at the rate 1.4c. What is the speed of A observed in B? What is the 
speed of C observed in B? 

5-2 A K° meson at rest decays into a w+ meson and a ir~ meson, each 
having a speed of 0.85c. If a K° meson traveling at a speed of 0.9c 
decays, what is the greatest speed that one of the w mesons can have? 
What is the least speed ? 
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5-3 Consider two reference frames, S and S', moving with speed v 

(< c) with respect to one another along the x direction. 

(a) If a certain object moves with velocity u (« < c) with respect 
to S, and velocity u' with respect to S', use the velocity addition equa¬ 
tions (in three dimensions) to show that u' < c. 

(b) If u = c, show that u' = c. 

(c) If v = 3c/4, and u' has components ux = —2c, uv' = 

Uz = 0, show that the components of u are ux = Sc/2, uu = uc = 0. 
How can you account for the fact that ux and ux have opposite signs? 
Experiment (on paper) with some other examples in which either or 
both of the combining velocities is greater than c. Is there any physical 
significance to such situations? 

5-4 Two neutrons, A and B, are approaching each other along a 
common straight line. Each has a constant speed /3c as measured in 
the laboratory. Show that the total energy of neutron B, as observed 
in the rest frame of neutron A, is 

(1 + /32)(1 - p2)-'Moe2 

where Mo is the neutron rest mass. 

5-5 A beam of atoms of radius R i moves with velocity u into a region 
of space containing a gas of atoms of radius R%. If there are n such 
atoms per unit volume of the region, what fraction of the incident 
beam is scattered in time t measured in the laboratory frame? How 
does your answer change if the scatterers move with speed v (in the 
lab frame) into the incident beam? Assume that the density of scat¬ 
terers is n in the scatterers’ frame. 

5-6 Measurements in two frames, S and S', are related by the usual 
Lorentz transformations, with v = 0.6c. At t’ = 10~7 sec, a particle 
leaves the point x' = 10 m, traveling in the x' direction with a constant 
velocity «' equal to —c/3. It is brought to rest suddenly at t' = 3 X 
10~7 sec (all measurements in S'). As measured in S: 

(a) What was the velocity of the particle during its trip? 
(b) How far did it travel? 

5-7 An inertial system Si has a constant velocity m along the x axis 
relative to an inertial system S. Inertial system S2 has a velocity V2 

relative to Si. Two successive Lorentz-Einstein transformations 
enable us to go from (x, y, z, t) to (xi,y\,zi,t\,) and then from 
(xi,yi,zi,ti,) to (X2, yz, Z2, Show that this gives the same 
result as a single Lorentz-Einstein transformation from (x, y, z, t) to 
(x2, yz, Z2, ti), provided we take the velocity v of S2 relative to S as 

1 + V1V2/C2 
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5-8 Consider two inertial frames, S and S', related in the usual manner. 

(a) At / = 0 a photon leaves the origin of S, traveling in a di¬ 
rection making a 45° angle with the x axis. What angle does its tra¬ 
jectory make with the x' axis in S' ? 

(b) Repeat part (a) for a body of mass m moving in S with speed u. 

(c) A rod which is stationary in S makes an angle of 45° with the 
x axis. What angle does it make with the x' axis? 

5-9 Three identical radio transmitters A, B, and C, each transmitting 
at the frequency po in its own rest frame, are in motion as shown. 

(a) What is the frequency of B's signals as received by C? 

(b) What is the frequency of A’s signals as received by C? 

5-JO A pulsed radar source is at rest at the point x = 0. A large 
meteorite moves with constant velocity v toward the source; it is at the 
point x — — / at / = 0. A first radar pulse is emitted by the source at 
t = 0, and a second pulse at t = to (/o < l/c). The pulses are re¬ 
flected by the meteorite and return to the source. 

(a) Draw a coordinate system like that shown in the diagram, and 
on it mark position versus time (i.e., the world lines) for the following: 
(1) the source, (2) the meteorite, (3) the two outgoing pulses, (4) the 
reflected pulses. 

(b) With or without the diagram, evaluate the time interval be¬ 
tween the arrivals at x = 0 of the two reflected pulses. 

(c) With or without the diagram, evaluate the time interval be¬ 
tween the arrivals at the meteorite of the two outgoing pulses, as mea¬ 
sured in the rest frame of the meteorite. 

5-11 An astronaut moves radially away from the earth at a constant 
acceleration (as measured in the earth’s reference frame) of 9.8 m/sec2. 
How long will it be before the red shift makes the red glare of neon 
signs on earth invisible to his human eyesight? 

5-12 There is a spaceship shuttle service from the earth to Mars. 
Each spaceship is equipped with two identical lights, one at the front 
and one at the rear. The spaceships normally travel at a speed vo, 

relative to the earth, such that the headlight of a spaceship approaching 
earth appears green (X = 5000 A) and the taillight of a departing 
spaceship appears red (X = 6000 A). 

(a) What is the value of vo/cl 

(b) One spaceship accelerates to overtake the spaceship ahead of 
it. At what speed must the overtaking spaceship travel (relative to 
earth) so that the taillight of the Mars-bound spaceship ahead of it 
looks like a headlight (5000 A green)? 
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5-13 According to Hubble’s law, the distant galaxies are receding 
from us at speeds proportional to their distance from us: 

v(r) = ar with a ~ 2 X 10~18sec_1 

(a) How far away would a galaxy be whose speed with respect to 
the earth is cl Would it be observable from the earth? 

(b) Consider the same questions (including Doppler effect) for a 
hypothetical galaxy for which v(r) = 1.1 c. 

5-14 A galaxy in Hydra emits light with a red shift corresponding to 
a recessional velocity with respect to the earth of 6 X 104 km/sec and, 
hence, according to Hubble’s law, a distance of about 3 X 10° light- 
years. If this galaxy passed the earth T years ago and has moved with 
constant velocity ever since, what is the value of 7'? 

5-75 Some observations reported on an astronomical object (quasar 
3C-9) suggest that, when it emitted the light that has just reached the 
earth, it was moving away from the earth at a speed of about 0.8c. 

(a) One of the lines identified in its spectrum has a wavelength 
of about 1200 A when emitted from a stationary source. At what 
wavelength must this line have appeared on the observed spectrum of 
the quasar? 

(b) Quasars emit energy at such a huge rate that astronomers 
believe they must burn out in a relatively short time. If the lifetime of 
3C-9 were assumed to be 106 years as measured in its own rest frame, 
over what total span of earth time would radiation from it be received 
at the earth? (Assume that its velocity relative to the earth remains 
constant.) 

5-16 A calcium line in the spectrum of the star a Centauri has a mea¬ 
sured wavelength of 3968.20 A; the same line in the solar spectrum 
has a measured wavelength of 3968.49 A. 

(a) What is the radial velocity of a Centauri relative to the solar 
system? Is it approaching or receding? 

(b) The transverse velocity of a Centauri is almost equal to its 
radial velocity; its distance from the sun is 4.3 light-years. By what 
angle does its apparent position in the sky change in 10 years? 

(c) How fast would calcium ions need to be moving transversely 

to the line of sight if light of normal wavelength 3968.49 A were to be 
changed by 0.29 A ? Would the light be distinguishable from that 
received from a Centauri ? 

5-17 (a) Consider two inertial frames, 5 and S', related in the usual 
manner. A light signal of frequency vo in 5 is emitted from the point 
x = —l at time t = —l/c. What is the frequency of the light signal 
in S'? 
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(b) Simplify your answer for the case /3c « 1. 

(c) Satisfy yourself that at t = 0, S' has the same velocity as a 

frame which began accelerating from rest at time t = —1/c with ac¬ 

celeration a = cc/l. 

(d) By the equivalence principle this result implies that the 

fractional frequency shift of light in a gravitational field g should be 

given by 

\Av\/v0 = p = gl/c2 

where / is the distance between the emitter and the receiver. A classic 

experiment demonstrating this shift was performed by Pound and 

Rebka [Phys. Rev. Letters, 4, 337 (I960)]. Their result was (measured 

shift)/(theoretical shift) = 1.05 ± 0.10. In the experiment l was 

60 ft; what was the value of \Av\/vor>. 

(e) Show that the fractional change in frequency of light (ob¬ 

served at infinity) leaving the surface of a star of mass M and radius R 

is Av/vo = — GM/Rc2. 

5-18 A space traveler accelerates continually at a rate of 9.8 m/sec2 

in his instantaneous rest frame. If he starts at rest from the earth, how 

far has he traveled at earth time /? How long does it take before he 

attains a speed c/2? [You can use the transformation equation for 

the acceleration component ax, Eq. (5-24), putting uz' = 0 and 

recognizing that in this case 7(c) is a function of time.] 

5-19 The following problem is based on a delightfully simple and 

explicit numerical example of the twin paradox due to Sir Charles 

Darwin [Nature, 180, 976 (1957)]. On New Year’s Day, 1984, an 

astronaut (A) sets out from earth at speed 0.8c and travels to the 

nearest star, a-Centauri, which is just about 4 light-years away as 

measured in the earth frame of reference. Having reached the star 

he immediately turns around and returns to earth at the same speed, 

arriving home on New Year’s Day, 1994, by earth time. The astronaut 

has a brother (B) who remains on earth, and they agree to send one 

another greetings by radar-telephone on every New Year’s Day until 

the traveler gets back. 

(a) Satisfy yourself that A sends only 6 messages (including the 

one made on the last day of his trip), whereas B sends 10. 

(b) Draw a space-time diagram of A's journey as plotted in the 

earth reference frame. (Mark off the scales of both x and ct in light- 

years.) Draw also the world lines of all the radar signals that B trans¬ 

mits. Verify with the help of the diagram that A (the astronaut) has 

received only 1 signal up to the moment of his turnaround, and receives 

the other 9 during the return half of the trip. 
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(c) Draw another space-time diagram, again in the earth reference 

frame, showing the world lines of the astronaut and of all the signals 

that he sends. Verify that his brother receives one message each 3 

years of earth time for the first 9 years after his brother’s departure, 

and then receives 3 more messages during the last year, making a total 

of 6—which is just right, since for the astronaut the trip has taken 3 

years each way. 

(d) Interpret these results in terms of the Doppler effect. 

5-20 A and B are twins. A goes on a trip to a Centauri (4 light-years 

away) and back again. He travels at speed 0.6c with respect to the earth 

both ways, and transmits a radio signal every 0.01 year in his frame. 

His twin B similarly sends a signal every 0.01 year in his own rest 

frame. 

(a) How many signals emitted by A before he turns around does 

B receive ? 

(b) How many signals does A receive before he turns around ? 

(c) What is the total number of signals each twin receives from 

the other? 

(d) Who is younger at the end of the trip, and by how much? 

Show that the twins both agree on this result. 

5-21 An astronaut circles the earth at a radius of 7 X 10° m (from 

the center) for a week. How much younger than a twin remaining on 

earth is he when he lands? (Neglect the rotation of the earth.) 

CNote: This is a case in which the traveler goes through an infinite 

number of different inertial frames, instead of just two, because of the 

constantly changing direction of his velocity. Basically, however, it 

comes down to a straightforward case of time dilation. There is a 

further complication in principle, associated with general relativity— 

that his body clock is in a different gravitational potential than at the 

earth’s surface and this also affects the clock rate. But with the orbit 

radius so little different from the earth’s radius, this effect is quite 

small compared to the time dilation.) 

5-22 In the experiment designed by Alvager et al. described in the 

text, the decay of neutral t° mesons into 7 rays (high-energy photons) 

was observed. These ir° mesons had energies ranging (approximately) 

from 6.0 to 18.0 GeV, rest energies of 135.1 MeV, and proper half- 

lives of 2 X 10-16 sec. 

(a) What was the range of speeds of the ir° mesons? 

(b) What was their range of half-lives (in the lab frame)? 

(c) How far did they travel before decaying? 
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(d) The speed of the 7 rays was determined by creating the 

ir° mesons (and hence the 7 rays) in bursts, and then measuring the 

time of flight of the 7 rays in each burst moving a fixed distance in a 

chosen direction. If this distance was 60 m in the lab frame, what 

would the time of flight be for 7 rays moving at speed c? At speed 2cl 
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One can not insist sufficiently on the fact that the special 

theory of relativity today rests upon innumerable experimental 

verifications, for we can regularly obtain particles of velocities 

approaching that of light in vacuum, particles in regard to 

which it is necessary to take account of corrections 

introduced by the special theory of relativity. 

L. DE BROGUE (1949) 

From an essay in Albert Einstein: Philosopher-Scientist, P. A. Schilpp, ed., 

a collection of essays published in honor of Einstein’s 70th birthday, Harper 

Torchbooks, New York, 1959. 



6 
Relativistic dynamics- 

collisions and 

conservation laws 

faced with the results of special relativity, we should in prin¬ 

ciple rewrite all our mechanics accordingly. But we know that 

this is not necessary. The Newtonian scheme, although it is 

strictly correct only in the limit of vanishingly small velocities, 

works beautifully in an enormous variety of situations. This, as 

we have seen, is because the greatest velocities that we encounter 

in the dynamics of ordinary macroscopic objects are still minute 

compared to the velocity of light (v < 10— 5c). There is, how¬ 

ever, one area in which the use of special relativity is clearly 

called for—in problems involving velocities that are not negligible 

compared with the velocity of light. And this means, primarily, 

the world of atomic and nuclear particles. It is with such prob¬ 

lems, therefore, that this chapter will be largely concerned. 

We shall not attempt in this chapter to consider in detail the 

motions of particles under the action of specified forces. Our 

goal will be a more modest one. What we shall do is to show the 

kinds of calculations one can do with the help of just two prin¬ 

ciples: (1) conservation of linear momentum, and (2) conserva¬ 

tion of energy. No. (1) will, as in the familiar Newtonian prob¬ 

lems, be applicable to each of the three separate components of 

linear momentum or to the total momentum treated as a single 
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vector. No. (2) is used with the understanding that the total 

energy in all forms, including mass, is the conserved quantity. 

We shall take it as basic that these two principles apply to any 

self-contained system, and we shall concentrate on situations in 

which an interaction is over and done with in some limited span 

of time. In other words, we shall fix our attention on collisions 

or analogous processes, and our only concern will be to relate 

“before” and “after.” 

Before being able to apply these conservation principles, 

however, we must consider how to formulate and justify them in 

relativistic terms. In Chapter 1 we developed expressions for the 

mass, momentum, and total energy of a single particle of rest 

mass m0 moving at speed v relative to the laboratory: 

m(v) = 7/mo 

p = 7/mov (6-1) 

E = 7/moc2 

with 7(d) = (1 — d2/c2)-1/2. The derivation of these results 

made explicit use of the relation between energy and momentum 

for photons (p = E/c). Furthermore, if you consider the argu¬ 

ments in detail, you will see that, in fact, we assumed that conser¬ 

vation of momentum and energy held good—and then inferred 

the appropriate formulas for momentum and energy required 

by this assumption. Thus in considering the pressure of light 

experiment, we could not have inferred anything about the 

momentum of photons without assuming that this momentum 

was fully transferred to the illuminated surface. In the Einstein 

box calculation, also, the conservation of momentum is explicitly 

assumed. In discussing the ultimate speed experiment, we took 

it for granted that a calorimetric measurement would, through 

energy conservation, give us an exact knowledge of the kinetic 

energy brought in by electrons traveling at speeds close to the 

speed of light. 

At this stage, therefore, we are not discovering these grand 

conservation principles of dynamics; we are, instead, asserting 

them, on the grounds that the use of such principles has already 

been amply justified in classical dynamics. And then, in going 

from Newtonian to Einsteinian dynamics, we are simply ex¬ 

tending the range of problems that can be handled according to 

a single set of rules. In the process we arrive at new prescriptions 

for calculating such quantities as momentum and kinetic energy 

in terms of the velocity and an inertial parameter (the mass). 
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The transition to relativistic dynamics is not, however, an 

arbitrary one. Given the relativistic kinematics, and a knowledge 

of the Newtonian laws, one is led quite naturally to the rela¬ 

tivistic formulation. We were not in a position to do this in 

Chapter 1, and our arguments there were, as we pointed out, 

more suggestive than convincing. But at this point we can offer 

a much cleaner approach, based upon readily visualizable situa¬ 

tions which we shall now discuss. The course of the argument 

illustrates, once again, the very intimate connection between the 

particular formulation of kinematics and the dynamics appro¬ 

priate to it. 

TWO VIEWS OF AN ELASTIC COLLISION 

We are going to consider a very simple type of collision process— 

a perfectly elastic collision between two identical particles. It 

will be a collision in which the whole motion takes place in one 

plane, and we shall analyze it in terms of momentum conservation. 

By way of background, consider for a moment the Newtonian 

version of this process. Bodies A and B, with initial velocities 

Ui and u2, respectively, collide with one another and afterwards 

have velocities vx and v2. In any individual collision of this type, 

it is always possible to find a set of four scalar multipliers (a) 

that permit one to write an equation of the form 

ami + a2u2 = a3vi + £*4V2 

This as it stands is a quite uninteresting statement. But experi¬ 

ments for all sorts of values of ux and u2 reveal the remarkable 

result that in every such collision, for two given objects, we can 

obtain a vector identity by putting ax = a3 = (a scalar 

property of body A) and a2 = a4 = niB (the corresponding 

scalar property of body B). In other words, the purely kinematic 

observations on a collision process lead us to introduce the 

parameters that we call the inertial masses of the two bodies, and 

permit us to write the familiar equation for conservation of 

linear momentum. 

When we introduce the relativistic kinematics, the relation¬ 

ship between initial and final velocities for two colliding objects 

is no longer expressible in quite such a simple form. Nevertheless, 

we keep as close to it as we can, and we do this by asking what is 

implied by the kinematics of such a collision if we assert con¬ 

servation of linear momentum in the following extended sense. 
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In the elastic collision of two bodies, A and B, as described 

from the standpoint of a particular frame of reference, the initial 

and final velocities are related by the equation 

/n.4(wj)ui + wB(«2)u2 = tnA(vi)vi + mB(P2>V2 (6-2) 

where mA is a scalar inertial property of A depending only on its 

speed and is the corresponding scalar property of B. We 

know that in Newtonian mechanics this equation is satisfied by 

values of mA and mB that are quite independent of speed. Let 

us now see how the relativistic kinematics implies the dependence 

of m on v as given in Eq. (6-1). 

We imagine two experimenters, one in the inertial frame S 

and the other in S'. They use identical types of instruments for 

measuring times and distances, and they agree to produce a 

completely symmetrical collision between two identical particles.1 

The experimenter in S will project one particle (A) along his y axis 

with a speed uQ (as measured in S), and the experimenter in S' 

will project the other particle (B) along his y' axis with a speed 

—w0 (as measured in S'). The speed u0 is small, but S and S’ have 

a very large relative velocity v along x. The experimenters are so 

skillful that the particles collide when their centers lie along the 

y axis. The collision as observed in S and S' thus takes the forms 

shown in Fig. 6-1. The y (or /) component of velocity of each 

•A gedanken experiment of this type was first introduced by G. N. Lewis 

and R. C. Tolman, Phil. Mag., 18, 510 (1909). 

Fig. 6-1 Elastic 

collision between two 

identical objects, 

observed from two 

reference frames 

related by a velocity 

v along x. 

Observed in S 

(b) 
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particle is exactly reversed, and its velocity along x (or x7) is 

unchanged. This corresponds to complete reversibility in time 

for the collision as a whole. 

In analyzing this process, we note the following points: 

1. As observed in S, the y component of velocity of A is 

initially «0, and afterward —u0. The y component of velocity of 

B is initially — u, and afterward u. The relation between «0 and 

u is given by the transformation equation [Eq. (5-3)] for velocity 

components transverse to the direction of relative motion of two 

reference frames: 

_ uj/y 
"" 1 + W//C2 

Since in the frame S' the velocity component ux' of B is zero, 

this reduces to 

w = uo/y = «o(l — t>2/c2)1/2 (6-3) 

2. As observed in S’, the roles of A and B are interchanged 

and the sign of v is reversed. The complete symmetry can be 

clearly recognized if Fig. 6-1 (b) is rotated through 180° in its 

own plane; it then matches Fig. 6-1 (a) in every respect. 

3. As observed in either reference frame, the speed of each 

particle remains unchanged by the collision, and is either w0 or 

(h2 + v2)112. Because of this, and the identity of the particles, 

we are concerned with only two possible values of m—m(u0) and 

m(V), where V = (w2 + u2)1/2. 

The conservation of linear momentum in the y direction as 

observed in S is then described by the following statement: 

py = m(uo)uo — m(V)u = —m(u o)«o + m(V)u 

Therefore, 

m(V) _ wo 
m(wo) w 

(6-4) 

Now we have postulated that u0 is small—as small as we choose 

to imagine. Hence the inertial quantity m(u0) can be taken to be 

just the Newtonian inertial mass m0. Also, given that w0 « 

it follows (a fortiori) from Eq. (6-3) that u « v, and hence that 

V « v. Thus, by imagining a limiting collision of this type, with 

w0 ~► 0, we conclude from Eq. (6-4) that 

m(v) = ymo = -(j--J/c2)1y2 (6-5) 
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and hence that p = 7w0v is an appropriate definition of the 

linear momentum for a particle of rest mass m0 traveling at 

velocity v. 

The above discussion is limited strictly to the question of 

momentum. Is the definition of mass that emerges from this 

analysis—i.e., as given by Eq. (6-5)—also applicable to cal¬ 

culations involving the energy of the system? We have of course 

already argued in Chapter 1 that this is indeed so, but an analysis 

based upon another hypothetical collision process will perhaps 

lend further conviction to the result. 

TWO VIEWS OF AN INELASTIC COLLISION 

Again we shall consider the impact of two identical particles, 

but this time we shall suppose that the collision is completely 

/nelastic. There will be a frame S' in which the particles approach 

each other along a straight line with equal and opposite velocities 

of magnitude u [Fig. 6-2(a)]. There will then exist another frame 

S, relative to which S' has velocity u, in which one of the particles 

is initially stationary [Fig. 6-2(b)]. 

As observed in frame S', the collision results in the formation 

of a stationary composite particle. Hence in frame S this com¬ 

posite particle must be observed to have the velocity u. In this 

same frame S the initially moving particle has a velocity U re¬ 

lated to u through the velocity addition formula, Eq. (5-2): 

= ux' + v 

UZ 1 + VUZ'/C2 

in which we put ux = U, ux' = v = u. Therefore, 

U = 
2 u 

1 + k2/c2 
(6-6) 

Fig. 6-2 Com¬ 

pletely inelastic 

collision between two 

similar objects, 

observed (a) in the 

zero-momentum 

frame, (b) in a frame 

in which one of the 

objects is initially 

stationary. 

In^ 
u —u 

(a) —— 

m(w) K 
In S 

U U 

(b) — 

m{u) m0 M 
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Now let us write the statements of conservation of momen¬ 

tum and conservation of mass, from the standpoint of frame S. 

(As in the previous section, we suppose that the mass is some 

function of the speed): 

Momentum: 

m(U)U = Mu (6-7) 

Mass: 

m(U) + mo = M (6-8) 

Eliminating M between these two equations we find 

m(U) _ u 

mo U — u 
(6-9) 

Now Eq. (6-6) gives the connection between U and u; thus we 

can find the ratio m(U)/m0 as an explicit function of U. From 

Eq. (6-6) we have 

u - 2(c2/ U) u + c2 = 0 

Therefore, 

= ^[1 ±0 - I/2/c2)1/2J 

Since we must have u —> U/2 for U « c, we know that the 

negative sign should be chosen. (Appeal to the fact that the 

radical is approximately equal to 1 — U2/2c2 for U « c.) Thus 

we have 
2 

« = ^[1 - (1 - t/2/c2)1/2] (6-10a) 

Therefore, 

U - u = C-[lf/c - 1 + (1 - t/2/c2)1/2] 

i.e., 

U - u = C- (1 - f/2/c2)1/2[ 1 - (1 - U2/c2)1/2] (6-10b) 

Substituting from equations (6-10) into (6-9), we have 

m(U) 

mo (1 - f/2/C2)1/2 7(t/) 
(6-11) 
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which thus reproduces the form of the mass formula of Eq. (6-5). 

This calculation involves more algebraic manipulation than 

the one in the previous section, but it is more satisfactory in 

several ways: 

1. The collision considered is an extremely simple one, the 

motion being entirely along a single straight line. 

2. The calculation is exact. One of the particles is, by defini¬ 

tion, completely stationary in frame 5 before the collision (not 

just approximately so as it was in the previous case). 

3. The explicit use of the mass-conservation equation leads 

naturally to the equivalence of mass and energy. We have, in 

essence, already developed the connection in these terms in 

Chapter 1, so the chief purpose of restating it here is to emphasize 

once again the intimate connection between the kinematics and 

the dynamics. From Eq. (6-11) we have 

m(U) = m0(l - V2/c2)~v2 

= mo + \moU2/c2 + • • • 

Therefore, 

m(U)c2 — moc2 -(- %moU2 + • • • (6-12) 

Noting that the second term on the right of Eq. (6-12) corre¬ 

sponds exactly to the classical kinetic energy of a particle of 

mass m0 and speed U, we come to the familiar statement that the 

total energy of a particle of rest mass m0 and speed U is given by 

E = 
moc / T J\ 2 

(T - U2/c2»'2 = m{U)C 
(6-13) 

with Eq = m0c2 defining the rest energy of the particle. 

4. By considering the collision further, we can demonstrate 

that the consistent use of a mass/velocity relation as given by 

Eq. (6-11) involves no contradictions. In Eq. (6-11) we have a 

statement of the mass of that colliding particle which, as observed 

in frame S, has speed U. Let us express this in terms of u, using 

Eq. (6-6); we have 

1 - n2/ 2 U /c 1 - 
4 (*W) 

(1 + U2/c2)2 

/i 2/ 2v2 
(1 - « /c ) 

(1 + u2/c2)2 

Therefore, 

m(U) 
(1 + u/c2) 
(1 - u2/c2) 

mo 
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Substituting this value in Eq. (6-8), we find that the mass of the 

composite particle, as measured in frame S, is given by 

M = 
2mg 

1 — u2/c2 
(6-14) 

But in frame 5 this composite particle has speed u. On the basis 

of Eq. (6-11) we would infer that its rest mass should be M0, 

where 

Mo = M(\ - u2/c2)v2 

Using Eq. (6-14), this would give us 

Mo 
2 mo 

(1 - «2/c2)1/2 
(6-15) 

But now, consider the collision as described in the frame S'. 

Here the composite particle is indeed at rest, having been formed 

from the collision of two particles, each of rest mass m0 and 

speed u. We are assuming that all the mechanical energy brought 

in by the colliding particles is retained within the composite 

particle. Thus we do not (and must not) assume that M0 is equal 

to 2m 0. Using the statement of conservation of mass as applied 

in frame S', we have 

Mo = 2 m(u) (6-16) 

which is identical with Eq. (6-15) if we accept the velocity depen¬ 

dence of mass as given in Eq. (6-11) and thus put m(«) = 7(w)m0. 

FURTHER REMARKS ON THE CONSERVATION LAWS 

It should be very clear from all the preceding discussion that the 

momentum and energy conservation laws are not sacred; there 

is nothing, however, in our experience so far that has required 

their abandonment. It has been a pretty near thing at times—as, 

for instance, when the existence of the neutrino, a hitherto un¬ 

observed particle, was postulated by W. Pauli in 1930 to avoid 

giving up conservation of energy in beta decay. It took over 20 

years before the neutrino was detected—but it was,1 and our 

confidence in the conservation laws was still further strengthened 

thereby. 

Clearly the conservation laws are not going to tell us the 

*F. Reines, et al., Phys. Rev., 92, 830 (1953). 
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whole story by a long way. In the collision of two atomic par¬ 

ticles, for example, we shall need detailed information about 

interatomic forces before being able to answer many of the 

important questions: Will the particles stick together? Or will 

they undergo an elastic collision? Or a partially inelastic col¬ 

lision? What will be the probability of scattering in a particular 

direction? What is the total effective target area that they present 

to each other? Will radiation be emitted after impact, and if so, 

of what kind? To provide the answers to these questions over a 

wide range of conditions is likely to require many man-years of 

research. Nevertheless, the basic conservation laws are the 

essential foundation for all else, and their generality makes them 

a powerful tool. What we shall do, then, is to hitch ourselves 

to the following statements (for an isolated system) and see 

where they lead us: 

2 
£totai = c wtotal = constant (6-17) 

p total = constant (6-18) 

We shall also be making use of the dynamic relations, already 

introduced in Chapter 1, that are derivable from equations (6-1): 

E2 = (cp)2 + Eo2 (with E = me2, Eo = moc2) (6-19) 

2 

m E 

or (6-20) 
B = v = P_ _ cp 

c me E 

Forces and accelerations will not enter this part of our discussion 

at all. 

We shall begin with some collision problems involving 

photons, because their lack of any rest mass makes the equations 

less complicated. 

ABSORPTION AND EMISSION OF PHOTONS 

Absorption 

Suppose that a stationary particle (e.g., an atom or nucleus) of 

mass (rest mass) M0 is struck by a photon (quantum) of energy Q 

which is completely absorbed. The combined system will have 

mass M' and will recoil with a velocity v. Then we have 
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Conservation of energy: 

E = Moc2 + Q = M'c2 

Conservation of linear momentum: 

p = Q/c = M'v 

Therefore, 

M' = Mo + Q/c2 

P = d/c = Q/(Moc2 + Q) (6-21) 

Note that, for Q « M0c2, we have simply 0 « Q/M0c2 

—corresponding to a Newtonian type of calculation in which a 

body of invariable mass M0 is given an impulse of magnitude 

Q/c by the photon. 

Emission 

Consider a stationary atom of mass M0 that emits a photon of 

energy Q. This is already more complicated than the previous 

example, because the emitting atom undergoes a recoil. Let the 

recoiling atom have mass M' (and rest mass M0') and velocity v. 

Then 

E = Moc2 = M'c2 + Q = E' + Q 

p = 0 = M'v — Q/c = p' — Q/c 

i.e., 

E' = Moc2 - Q 

cp' = Q 

We will solve these equations for Q by taking advantage of the 

relation between E' and p' for the recoiling atom. Using Eq. 

(6-19), we have 

(M0'c2)2 = (E')2 - (cp')2 

= (Moc2 - Q)2 - (02 

i.e., 

(Mo'c2)2 = (Moc2)2 - 2Moc2Q (6-22) 

Now M0c2 and M0'c2, the rest energies of the atom in its initial 

and final states, have certain definite values, and the difference 

between them is a well-defined, fixed energy. Let us therefore put 

Mo'c2 = Moc2 - Go (6-23) 
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Therefore, 

(Afo'c2)2 = (A/0c2)2 - 2Moc2Q0 + Q02 (6-24) 

Combining Eqs. (6-22) and (6-24), we get 

Since the photon energy is proportional to the frequency, 

the corresponding frequency is lowered and the wavelength in¬ 

creased. Only if the emitting atom could somehow be prevented 

from recoiling would the total energy release Q0 be conferred 

on the photon. 

These results have important physical implications, because 

they place restrictions on the ability of atoms and nuclei to re¬ 

absorb their own characteristic radiations. Any element when 

suitably stimulated (as in an electric-discharge tube) emits a 

characteristic line spectrum—for example, the Balmer series of 

hydrogen. These lines are very sharp; that is to say, each line 

represents an extremely small spread of wavelengths about some 

average. This sharpness is an expression of the fact that the 

emitting atoms themselves cannot exist in states with any arbi¬ 

trary energy but are limited to a series of sharp energy levels. 

The emission of a photon corresponds to a certain decrease of 

energy (or mass) of an atom, as described by Eq. (6-23), when 

the atom falls from a state A to a state B. The photon, however, 

is cheated out of a small fraction of this energy by the atomic 

recoil. Thus, if such a photon encounters another similar atom 

which is in its lower state B and at rest, there is not enough energy 

to raise the atom back to state A (and the situation is exacerbated 

by the fact that the absorption process in turn involves a recoil). 

If atomic energy states were perfectly sharp, and if emitting and 

absorbing atoms were both initially stationary, a vapor would 

thus be transparent to its own radiation. Of course, the situation 

we have described is unrealistic on two counts. Atomic energy- 

levels are not perfectly sharp, and the atoms of a vapor have 

thermal motions that can, if the velocities are right, nullify the 

effects of recoil. It turns out, in fact, that the thermal motions 

completely mask the effect in the case of visible light. But with 

the much more energetic photons that are ejected from nuclei as 

7 rays the recoil effect is relatively much greater [note that ac- 
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(a) (b) 

Fig. 6-3 Demonstration of nuclear resonant scattering 

by freely recoiling atoms of 19RHg. (a) Schematic 

diagram of apparatus, (b) Ratio of scattering by 

mercury to scattering by lead, plotted as a function of 

rotor tip speed [P. B. Moon, Proc. Phys. Soc. (London) 

A64, 76 (1951); IV. G. Dacey and P. B. Moon, Proc. 

Phys. Soc. (London), A66, 956 (/95J)]. The complete 

resonance curve could not be traced out, because of 

bursting of the steel rotors through centrifugal stresses 

at higher speeds. 

cording to Eq. (6-25) the fractional shift of energy is equal to 

Q0/2M0c2 and so increases in proportion to Q0 for a given value 

of A/0], and we shall briefly describe an experiment that demon¬ 

strated it. 

The experiment was done by P. B. Moon, using an ultra- 

high-speed rotor. Figure 6-3(a) is a diagram of the arrangement. 

A radioactive source of excited atoms of 198Hg was mounted 

on the tip of the rotor. Gamma rays (having a photon energy 

of 412 keV) emitted from the moving source fell upon a stationary 

target of mercury, from which a fraction of them were scattered 

into a counter and thereby detected. The scattering, like the 

absorption, is greatest when the energy is just right to lift the 

struck nucleus into a higher state. Experiment showed [cf. 

Fig. 6-3(b)] that this condition was reached at a source velocity 

of about 700 m/sec for 1D8Hg. 

It is clear that the nuclear recoil represents an extremely 

small fraction of the liberated energy. It is determined by the 

ratio Q0/2M0c2 that appears in Eq. (6-25), and for the case 
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under discussion we have 

Qo = 4.12 X 105eV 

Mo = 198 amu = 3.28 X 10_25kg 

Mac2 = 2.95 X 10“® joule = 1.84 X 10neV 

Qo/2Moc2 ~ 10-6 

One can see that for photons of visible light, with Q0 = 2 eV, 

the effect is five orders of magnitude smaller yet. 

Each photon is involved in two recoils—once when it is 

emitted, and again when it is absorbed or scattered. The factor 

(1 — Qq/IMqc2) must thus be applied twice, and the velocity 

given to the source must be sufficient to make up for the fraction 

Qq/Mqc2 of the original excitation energy that is made un¬ 

available in this way. It is possible to calculate the requisite 

velocity by appealing to the kinematic theory of the Doppler 

effect (Chapter 5). Since the nuclear recoil is very small, the 

frequency v, and hence the energy hv, of the radiation is raised 

by the fraction v/c very nearly, as for any source moving toward 

an observer with a speed v that is much less than c. We therefore 

demand the relationship 

v/c ~ Qo/Moc2 

Putting in the precise values of Q0, M0, and c, we have 

v/c = 2.24 X 10-6 

i.e., 

v ~ 670 m/sec 

The peak of the observed scattering curve corresponds quite 

closely to this figure. 

THE MOSSBAUER EFFECT 

It would seem that an atomic or nuclear recoil ought to be an 

inescapable feature of photon emission. This, however, is not so. 

There is a most remarkable effect (named after R. Mossbauer, 

who received the Nobel prize in 1961 for discovering it) by which 

the recoil may to all intents and purposes be suppressed com¬ 

pletely for atoms in a crystalline lattice. What happens is that, 

in some circumstances, the recoil momentum accompanying emis- 
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sion and absorption of a nuclear 7 ray is taken up by all the 

atoms in the crystal, rather than by a single nucleus. Even if 

the crystal is minute by macroscopic standards, it contains so 

many atoms (e.g., about 1010 in a crystal that is lju3 in size) 

that the ratio Qo/lMyc2 in Eq. (6-25) is rendered almost vanish¬ 

ingly small. With the iridium isotope 191Ir, for example (with 

which Mossbauer carried out his original experiments) the energy 

release Q0 is 129 keV, or about 2 X 10-14 joule. If we take 

Mq to be the mass of 1010 atoms of iridium, i.e., about 

3 X 10~15 kg, we have 

Go 2 X 10 14 
2Mqc2 ~ 2 X 3 X IQ"15 X 9 X 1016 

3 X 10-17 

Now we remarked earlier that the existence of an atomic or 

nuclear recoil does not by itself guarantee that emitted photons 

cannot be reabsorbed by similar atoms. We can meaningfully 

state the value of an energy Q0 that characterizes the difference 

of rest energies of the atom in its normal and excited states, but 

this is only a most probable value. The excited atom has a finite 

chance of being formed from the lower state if the energy input 

is close to Q0, rather than being precisely equal to it. This 

characteristic “width” of an atomic or nuclear state is a very 

individual thing. If the width happens to be extremely small, 

the absorption is very sharply tuned, as it were. It is for such 

cases, where the slightest displacement of energies would make 

reabsorption impossible, that the Mossbauer effect becomes a 

spectacular phenomenon. To take 191Ir as the example once 

again, the 129-keV recoilfree 7 rays have energies varying over 

about 5 X 10“6 eV. Thus we have 

AG _ 5 X 1Q~6 ~ 5 x io~n 
Go 105 ~ 5 X 10 

We may note first that this ratio is several orders of magnitude 

smaller than the ratio Q0/2M0c2 if for M0 we take the mass of 

just one atom. Thus reabsorption of these gamma rays would be 

impossible if either the emitting nucleus or the absorbing nucleus 

were free to recoil. On the other hand, the value of &Q/Qo is 

many orders of magnitude greater than Q0/2M0c2 if for M0 we 

take the mass of billions of atoms. Thus if the excited nuclei of 

191Ir that emit the gamma rays, and the normal nuclei of 191Ir 

that absorb them, are both embedded in crystal lattices, the recoil 

effects are quite negligible, and the absorption can take place. 
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Fig. 6-4 Mossbauer effect. (a) Experimental arrange¬ 

ment. The detector D is shielded from the source except 

when the latter is moving in line with the long hole in 

the shield, (b) Percentage difference in intensity of 

129-key 7 rays from 10llr as measured behind a 

resonance absorber (.iridium) and a comparison absorber 

(platinum). 

But now comes the really startling feature. The ratio AQ/Q0 

is so tiny that by introducing just a small relative velocity be¬ 

tween source and absorber it is possible, because of the resulting 

Doppler shift, to destroy the condition for reabsorption. In the 

case of I91Ir we have 

Therefore, 

v ~ 2 cm/sec 

This is, quite literally, little more than a snail’s pace. 

Figure 6-4(a) shows the experimental arrangement used by 

Mossbauer to demonstrate the effect. The source was mounted 

on a slowly rotating turntable. Figure 6-4(b) shows his results 

in this particular experiment. It is a truly remarkable phenom¬ 

enon, which has since been observed for quite a number of 

emitters of low-energy 7 rays. Some of them exhibit an even 

greater sensitivity than 191Ir to the relative motion of source 

and absorber. But for details and for some of the fascinating 

applications, we must refer you elsewhere.1 It is only because of 

■See, for example, the excellent account by H. Lustig, Am. J. Phys., 29, 

1-18 (1961). 
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the extraordinary interest of the Mossbauer effect that we have 

ventured to discuss it at all. Our original topic was the recoil 

accompanying photon emission, and this has been a whole sec¬ 

tion about the recoils that do not take place! 

THE PHOTON ROCKET1 

Enthusiasts for space travel have sometimes proposed the use of 

radiation as a propellant for a spaceship. The suggestion is 

motivated, at least in part, by the fact that the thrust of a rocket 

is proportional to the speed of the ejected fuel; thus there is, on 

the face of it, a lot to be gained by substituting c (3 X 108 m/sec) 

for the speeds of the order of 104 m/sec that represent the limit 

for chemical fuels. The suggestion might become very attractive 

if we could give a spacecraft a speed so near c that we could give 

travelers the benefit of a large time dilation on a lengthy inter¬ 

stellar trip. 

Suppose we start with a rocket of rest mass m0, which has 

a payload of rest mass equal to some fraction / of m0. Starting 

from rest, we end up by having the payload traveling at speed v. 

A certain total amount of radiated energy, Er, is traveling in the 

opposite direction. Using the energy and momentum conserva¬ 

tion equations we thus have 

2 fmoc2 , „ 
Ctotal moc ^ _ y2/c2)l/2 Er 

_ „_fmpv_Er_ 
Ptotal U (j _ V2/C2)m c 

Eliminating Er between these equations, we have 

mpc = 
fmpc 

+ 
fm0vc 

(1 - v2/C2)1/2 ’ (1 - 1>2/c2)1/2 

i.e., 

7/+7/3/= 1 where /3 = v/c, 7 = (1 - v2/c2)~m (6-26) 

We want to design for a specified value of the time-dilation 

factor 7, so we shall solve Eq. (6-26) for /. Now f} and 7 are 

related by the equation 

7 = (i - /32ri/2 

'With acknowledgment to J. R. Pierce, Proc. IRE, 47, 1053-1061 (1959). 
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Therefore, 

7/3 = (72 - 1)1/2 

Thus Eq. (6-26) can be written 

yf+ (72 - l)1/2/= l 

which yields the following equation for /: 

/2 - 27/ + 1 = 0 

Suppose, for example, we put 7 = 10, so that the time dilation 

makes a really significant difference in a long and tedious inter¬ 

stellar trip. Then we find / « 0.05. This looks encouraging. 

But if you are humanitarian (or a prospective space traveler 

yourself) you want to bring the travelers back. And that will 

mean going through three more stages of the same kind, because 

we must bring the spaceship to rest, reaccelerate it for the return 

journey, and finally stop it at the earth. The mass of the returning 

remnant can be only a fraction /4 of the original mass m0—i.e., 

in the case we have chosen, less than 10~5m0. It isn’t so very 

promising after all. 

CREATION OF PARTICLES 

Perhaps the most remarkable of all the possibilities suggested by 

the mass-energy equivalence is the creation of new particles if an 

adequate amount of energy is made available. A sizeable frac¬ 

tion of all activity in physics today is founded upon this phe¬ 

nomenon, especially for the purpose of creating and studying 

particles that are too short-lived to be found in nature. To create 

a particle of rest mass m0 will clearly require an energy input of 

at least m0c2. In practice, however, more than this has to be 

used—for many cases a great deal more. There are two main 

reasons for this: 

1. There appear to be fundamental conservation laws, over 

and above those for energy and momentum, which in many 

cases make it impossible to create only one new particle in a 

collision process. The most familiar of such laws is the con¬ 

servation of electric charge. For example, the very first such 
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process to be discovered was the creation of an electron-positron 

pair from the energy of a 7-ray photon1: 

7 —> e~ + e+ 

Although, on energetic grounds alone, a 7 ray of 0.51 MeV 

would suffice to provide the rest-mass energy of one electron, 

the only type of process that nature allows requires at least twice 

this amount. 

Actually, although charge conservation applies invariably in 

these transmutations, it is by no means the only restriction. For 

example, one could envisage the creation of the constituents of a 

neutral hydrogen atom—one proton and one electron—using 

the energy of a single photon (> 938 MeV). But this is not an 

observed process. It appears that many types of particles (in¬ 

cluding electrons, protons, and neutrons) cannot be created 

without calling into existence their so-called antiparticles—par¬ 

ticles of the same rest mass, but with electric charge, magnetic 

moment, etc., of the opposite sign. The creation of a neutron, 

even though it is uncharged, does not occur without the simul¬ 

taneous creation of an antineutron (differing from it in the sign 

of the magnetic moment). 

2. The other reason that may step up the energy require¬ 

ments for particle creation is a purely practical one. It arises from 

the fact that the creation process normally is made to take place 

by causing energetic collisions between preexisting particles. 

Thus, for example, positively charged x mesons (pions) can be 

made by bombarding a hydrogen target with high-energy protons: 

Pi + Pi —> P + N + x+ 

The colliding protons, Px and P2, give rise to a proton, a neutron, 

and a pion, as indicated. (The x meson happens to be a particle 

that can be created singly, without an associated antiparticle.) 

Since a neutron and a proton have almost equal rest masses, the 

only new rest energy needed is that represented by the pion, about 

140 MeV. But if the target proton P2 is initially at rest and Pi 

has a large momentum, a good deal of kinetic energy is locked 

up in motion of the system as a whole, and is unavailable for 

conversion into the rest mass of new particles. 

It is clear that (2) is not a fundamental limitation in prin- 

1 First observed by C. D. Anderson in 1932. He was awarded the Nobel 

prize in 1936 for this research. 
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Fig. 6-5 (a) Two protons colliding with equal and 

opposite velocities in the zero-momentum frame. 

(ib) The final state in this frame at the threshold for pion 

production, yielding a proton, a neutron, and a ir+ meson 

at rest. 

ciple. If particles Pi and P2 could be made to collide with equal 

and opposite momenta, the amount of energy associated with 

the general motion of the system would be zero. All the kinetic 

energy of collision would then be available for particle creation. 

To produce colliding beams of particles traveling in opposite 

directions is technically a great deal harder than to have one beam 

striking a stationary target, but the payoff can be great, as we 

shall see. 

Let us now consider in more detail some of these creation 

processes. 

Pion production 

Whether or not we have colliding beams, we can always imagine 

ourselves to be in a frame of reference where the total momentum 

is zero. Suppose we do this for two colliding protons, so that 

they have equal and opposite momenta, dtp, and a total energy 

2me2 [Fig. 6-5(a)]. It is conceivable that in this zero-momentum 

frame we have a final state, as represented by Fig. 6-5(b), in 

which all particles are at rest. This will represent the most 

economical condition for particle creation, since nothing is 

wasted on kinetic energy, and will give us 

E = 2 me2 = 2moc2 + mTc2 

where m0 is the rest mass of a nucleon—i.e., of either a proton 

or a neutron, disregarding the slight mass difference between 

them—and mT is the rest mass of a charged pion.1 Thus we have 

m 

mo 
= 1 + 

2/mo 

■Taking the electron mass as a unit, the proton mass is 1836.1 and the neu¬ 

tron mass is 1838.6, a difference of only 0.14%. The mass of a charged pion 

(+ or —) is 273.2me. (Neutral pions are only 264.2me.) 
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With m,r = 273me, m0 = 1837we, this gives m/m0 = 1.074, or 

m0/m = 0.93. We can use this value of m0/m to fix the speed 

(d) of each proton in the zero-momentum frame, for we have 

m/m0 = 7 = (1 - /32r1/2 (6-27) 

/32 = 1 - (mo/m)2 = 0.135 

/3 « 0.37 

Now if proton P2 is actually at rest in the laboratory frame, the 

zero-momentum frame must have the speed f} relative to the 

laboratory. Thus the proton Pi, which has the speed (i in the 

zero-momentum frame, has a velocity f$ i in the laboratory frame 

given by 

l +d2 

2d 
1 +d2 

0.65 

according to the relativistic velocity-addition theorem [cf. Eq. 

(6-6)]. From this we have 

7i = (1 - di2)-1/2 « 1.31 

This means that the bombarding proton must have a kinetic 

energy of (Tx — l)m0c2, or 0.31woc2. The rest energy of a 

nucleon is 938 MeV, so the kinetic energy required is about 

290 MeV, or rather more than twice the rest energy of the created 

pion. It would have been precisely a factor 2 if we could have 

ignored the relativistic increase of mass with velocity for the 

protons. (Satisfy yourself that this is so.) 

The bombarding energy as calculated here is what is called 

the threshold energy for the process. We know that anything less 

than this is insufficient, and in practice the bombardment is 

carried out at energies appreciably above threshold, because this 

enhances the efficiency of the process—i.e., the probability that 

in a proton-proton collision a pion will in fact be created. But 

this last statement raises questions beyond our present discussion, 

which is limited strictly to the collision dynamics and the cal¬ 

culation of threshold energies. Figure 6-6 is a bubble-chamber 

photograph showing the kind of evidence from which the occur¬ 

rence of particle-creation events like these can be inferred. 

Antiproton production 

We mentioned earlier that the negatively charged antiproton 

cannot be produced without also calling into existence its own 
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Fig. 6-6 Bubble- 

chamber photograph 

of the production of 

a r+ meson through 

the process p + p—* 

p + n + t+, using 

protons of about 

3 CeV and a liquid- 

hydrogen bubble 

chamber. The in¬ 

cident proton (/) 

collides with a proton 

in the liquid hydrogen, 

producing a it+ (2), 

a proton (3), and a 

neutron (which leaves 

no track). The r+ is 

recognized by its 

subsequent decay 

giving a p+ meson 

(short track) which 

in turn decays, 

yielding a positron 

(4). All tracks are 

curved by a strong 

magnetic field applied 

perpendicular to the 

plane of the picture. 

Relevant tracks em¬ 

phasized. (Brook- 

haven National Lab- 

2 

antiparticle, i.e., an extra proton of the normal sort. It is pos¬ 

sible to create a proton-antiproton pair by means of a proton- 

proton collision. The reaction can be written 

Pi + P2 -» Pi + P2 + P + Pa 
oratory.) _ 

where P is the antiproton and P3 is the additional ordinary 

proton that appears with it. Hence, before even considering the 

unavailable kinetic energy, we know that at least twice the rest 

energy of the desired particle must be supplied. The most efficient 

conceivable way of making antiprotons through proton-proton 

collisions is to have a final state just like the one assumed in the 

pion-production problem, i.e., a state in which all the particles 

are at rest in some reference frame. The fact that we have four 

particles after the collision (three protons and an antiproton) 

instead of three does not make the calculation any harder. In¬ 

deed, the fact that all the particles have the same rest mass m0 

makes it arithmetically simpler to handle. 

Figure 6-5(a) can again be used to represent the initial state 

in the zero-momentum frame. The total energy in this frame must 

be equal to (or greater than) the rest energy of four nucleons. 
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Hence at threshold we have 

E = 2mc2 = 4moc2 

Equation (6-27) thus gives us 

7 = (1 — 02)-1/2 = m/mo = 2 whence 02 = £ 

If we again assume that proton P2 is a target proton at rest in 

the laboratory frame, the required velocity of Pi in the laboratory 

is once more given by 

^ 1+02 

This time, instead of evaluating 0j itself, let us go directly to the 

calculation of the corresponding value of 71: 

_L 2 = (1 + d2)2 - (2d)2 = (1 - /32)2 
7l2 Pl (1 + 02)2 (1 + 02)2 

Therefore, 

7 1 + d2 1 + 3/4 
1 1-02 1-3/4 

The bombarding proton must therefore have a total energy of 

7m0c2, i.e., a kinetic energy of 6m0c2. Since the rest energy of a 

proton is 0.938 GeV (BeV), this calls for an incident proton beam 

of at least 5.62 GeV. It was for this reason that the University 

of California Bevatron, the first artificial source of antiprotons 

(1955), was designed to deliver protons of 6-GeV kinetic energy. 

Pair production by photons 

Figure 6-7 shows a beautiful example of the production of an 

electron-positron pair by a high-energy photon. The almost 

symmetrical spiraling of the tracks of the oppositely charged 

particles in a magnetic field shows that, in this particular event, 

the electron and positron were produced with nearly equal 

energies. One is left in no doubt that the photon that created this 

pair came in from the bottom of the picture, although being un¬ 

charged it left no track. But the process is more subtle than it 

looks. One might be tempted to imagine that a photon, all by 

itself, spontaneously transformed itself into an electron and a 

positron. But this is impossible on dynamical grounds alone, 

because linear momentum could not be conserved. To see that 
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Fig. 6-7 Production 

of an electron- 

positron pair in a 

liquid hydrogen 

bubble chamber in a 

magnetic field. 

(Photo courtesy of 

Prof. Irwin Pless and 

the Harvard-M.I.T. 

bubble-chamber 

group.) 

this is the case, consider the fact that whatever the velocities of 

the electron and positron may be in the laboratory, one can 

always find a reference frame in which their momenta are equal 

and opposite, so that the total linear momentum is zero. But 

one can never transform away the velocity c of a photon, and 

although the momentum of a photon will have different values in 

different frames, it can never be zero. Thus there must be another 

partner to the act of pair creation. This partner can be an electron 

or (more usually) an atomic nucleus. 

If we imagine that the fourth particle is a nucleus, the 

analysis of the dynamics, at least in approximate terms, becomes 

quite simple. For a nucleus, being very massive, can take up a 

large amount of linear momentum without at the same time 

siphoning off a lot of kinetic energy—consider the Newtonian 

result that the kinetic energy of a particle of mass m and some 

given linear momentum p is equal to p2/2m and so can be made 

very small if m is very large. Thus it may be roughly true to say 

that all the energy of the photon goes into the electron and 

positron and that the nucleus takes care of the momentum 

balance. 

In the photograph of Fig. 6-7, the pair production has 

occurred in a liquid-hydrogen bubble chamber. From the 

absence of any other visible recoil track, one can infer that the 

fourth partner in the process was a proton in one of the hydrogen 

atoms, rather than an electron. The rapid curling up of the elec¬ 

tron and positron tracks shows that the particles lose energy at 

a rapid rate in traveling through the liquid hydrogen. 
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This kind of pair production by energetic photons is not 

limited to electrons, although the minimum photon energy for 

anything else is enormously greater than the 1.02 MeV that 

represents the threshold for electron/positron creation. 

It is appropriate to mention here another process, which can 

be regarded as the inverse of pair creation. This is the mutual 

annihilation of a particle and its antiparticle with the production 

of radiant energy. A positron and an electron come together, 

and from the encounter two photons emerge. Why two and not 

one? Again we can recognize the requirements of momentum 

conservation at work. There is a reference frame (usually the 

laboratory itself) in which the total momentum of the electron- 

positron system is zero. At the very least we must have two 

photons (of equal energy, and traveling in opposite directions in 

this frame) to maintain the balance of both momentum and energy 

—at any rate if the electron and positron, when they annihilate, 

are effectively isolated from any other particles. 

SCATTERING 

As our next topic in this brief survey of relativistic collision 

problems, we shall consider two problems in elastic scattering— 

i.e., elastic collisions between particles. Since the study of scat¬ 

tering is one of the chief tools for investigating structures and 

forces on the atomic scale, a familiarity with the basic dynamics 

is important. 

Elastic scattering of identical particles 

As a first example we shall take the collision between two iden¬ 

tical particles, e.g., two protons or two electrons. It is a well- 

known result of Newtonian mechanics that, if a stationary 

particle is struck elastically by an identical particle, the angle 

between their subsequent trajectories is exactly 90°. Figure 6-8 

shows a pretty example of this for a proton-proton collision at 

low energy (K ~ 5 MeV, v/c « 0.1) that occurred when an 

incident proton struck a stationary proton in one of the hydrogen 

atoms in a photographic emulsion. Because of the increase of 

inertial mass with velocity, this result ceases to be true in the so- 

called relativistic region of energies; there is a squeezing forward 

of the directions so that the included angle becomes less than 90°. 
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Fig. 6-8 Elastic 

scattering of an 

incident proton of 

about 5 MeV by an 

initially stationary 

proton in a photo¬ 

graphic emulsion. 

The collision is “non- 

relativistic" 

(K/m0c2 <3C 1) with 

a 90° angle between 

the tracks of the 

protons after colli¬ 

sion. (From C. F. 

Powell and G. P. S. 

Occhialini, Nuclear 

Physics in Photo¬ 

graphs, Oxford Univ. 

Press, New York.) 

For simplicity we shall limit ourselves to considering the 

special case in which, after collision, the two particles (as ob¬ 

served in the laboratory frame S) travel symmetrically at equal 

angles to the direction of the incident particle. Let the incident 

particle have total energy E\ and momentum pi, and let the 

momenta of the particles after collision be of magnitude p2 at 

angles ±6/2 to pi, as shown in Figure 6-9. Then by conservation 

of energy and momentum we have 

Ei + Eo = 2E2 

0 
Pi = 2/72 cos- 

Also we have 

c2pi2 = Ei2 - Eo2 c2pz2 = E22 - Eo2 (6-30) 

«H28) 

(6-29) 

Pi O 

EfPi 
\e/2 

//e/2 

Pi 

Fig. 6-9 Relativistic elastic 

collision of a particle with 

a similar particle initially at 

rest. The final state is 

assumed to be a symmetrical 

one in which the particles 

have equal speeds and hence 

make equal angles with the 

initial direction of particle 1. 
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It proves convenient to introduce the kinetic energy K1 of the 

incident particle, so that we put 

Ei = Eo + Ki 

Using Eqs. (6-28) and (6-30) we then find 

c2pi2 = (Eo + Ki)2 - Eo2 = Ki(2E0 + Ai) 

c2P22 = (Eo + Ki/2)2 - Eo2 = Ki(E0 + Ki/4) 

Substituting these in Eq. (6-29) gives us 

20 
cos - 

Putting 

2E0 + *i 
4E0 + Ki 

2 6 
cos 6=2 cos — — 1 

we find 

cos0 = 
Ki 

4E0 + Ki 
(6-31) 

The change in the appearance of the collision as we go from low 

to high energies is nicely displayed in Eq. (6-31). For A'l «. E0 

we have cos 6 —» 0, 6 —> tt/2. For A'l » E0, we have cos 6—* 1, 

6 —» 0. This relativistic compression of the scattering angles was 

first experimentally verified by F. C. Champion in 1932 for fast 

electrons (/3 particles).1 Using a cloud chamber, he studied the 

elastic collisions of these electrons with the electrons of the 

atoms of the air in the chamber. Since that time the effect has 

become a commonplace in high-energy particle physics. Figure 

6-10 shows a bubble-chamber photograph of a proton-proton 

*F. C. Champion, Proc. Roy. Soc. (London), A136, 630 (1932). 

2 
Fig. 6-10 Elastic 

proton-proton 

collision in a liquid- 

hydrogen bubble 

chamber, using 

incident protons of 

about 3 Cev. The 

incident proton 

enters at 1, and the 

two recoiling protons 

leave at 2 and 3. 

One cannot tell which 

of the latter was the 

incident proton. Rele¬ 

vant tracks empha¬ 

sized. (Brookhaven 

National Laboratory.) 
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Fig. 6-11 Compton effect. 

An incident photon is 

scattered and degraded in 

energy as the result of an 

elastic collision with an 

initially stationary electron. 

collision of this type, at an incident proton energy equivalent to 

several proton rest-masses. 

The Compton effect 

Of all the phenomena pointing to the corpuscular properties of 

photons, the Compton effect is perhaps the most direct and 

convincing. It is the collision of a photon with a free electron— 

which in practice means an electron loosely bound to an atom, 

so that it is effectively free. The collision is elastic, in the sense 

that no energy is siphoned off from kinetic energy into other 

forms, but because the electron recoils, the scattered photon has 

a lower energy, and hence a longer wavelength, than the incident 

photon. The systematic study of this phenomenon during the 

years 1919-1923 by A. H. Compton,1 using X-ray photons, 

brought him a Nobel prize in 1927. 

The Compton scattering process is an essentially relativistic 

collision, and can be described as follows. A photon of energy 

Q q strikes a stationary electron, which recoils in the direction <p 

(Fig. 6-11). The photon is scattered in the direction 6 with 

energy Q. Conservation of energy and momentum give us the 

following: 

Co + woe2 = E+ Q (6-32) 

noQo/c = n Q/c + p (6-33) 

where E and p are the energy and momentum of the recoiling 

electron. If we are interested in the scattered photon and not in 

the electron, we can proceed as follows: 

(Go — G) + wo c2 = E 

(noGo - nQ) = cp 

'A. H. Compton, Phys. Rev., 22,409 (1923). 
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where n0 and n are unit vectors in the initial and final photon 

directions, as shown. Square each of the above (i.e., form the 

scalar product of each side with itself in the second case): 

(Go - G)2 + 2(Q0 - Q)m0c2 + (m0c2)2 = E2 (6-34) 

Go2 - 2eoGcos0 + G2 « c2p2 (6-35) 

Subtracting Eq. (6-34) from (6-35), 

2GoG(l - cos 6) - 2(Qo - Q)m0c2 = 0 

Therefore, 

G 
1 

Go 
1 

moc* 
; (1 - COS 6) 

If the quantum energy is Q, the wavelength is given by 

G = A* - £ 

Thus in terms of wavelength the Compton effect is described by 

the following equation: 

X - X0 = — (1 - cos 6) (6-36) 
moc 

For electrons, h/m§c = 0.02426 A, or 2.4 X 10~10m. What 

Compton did was to establish that the scattered X-ray wave¬ 

length conformed to Eq. (6-36), both in its angular dependence 

and in the absolute size of the shift.1 Figure 6-12 is a graph 

constructed from Compton’s published data. It remained a 

matter of great interest, however, to demonstrate the ballistic 

nature of the collision by showing that the recoiling electron 

appeared simultaneously with the photon, and in a direction <p 

uniquely defined by the dynamics. The latter feature was con¬ 

vincingly demonstrated by Cross and Ramsey in 1950, using 

incident photons (7 rays, in this instance) with a sharply defined 

energy of 2.6 MeV. The experiment confirmed that the angle 

between photon and electron after scattering had the theoretical 

value within narrow limits (see Fig. 6-13). The coincidence in 

time between the particles in a Compton scattering process has 

‘The latter point is important, because even on a classical wave picture of 
radiation one can picture a free electron as being given a velocity under the 
action of radiation pressure. Radiation scattered from it would then be 
Doppler-shifted with the same angular variation as that given by Eq. (6-36). 
But the size of the shift would not be sharply defined, because the electron 
velocity would increase continuously from zero. 
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Fig. 6-12 Result of 

A. H. Compton’s 

original experiment 

on the scattering of 

X rays by effectively 

free electrons. 

been established as being good to 10“11 sec or less.1 Although 

10-11 sec is not particularly short on the time scale of atomic 

processes, the close association of an electron with each scattered 

photon is clearly shown by this result. 

*Z. Bay, V. P. Henri, and F. McLernon, Phys. Rev., 97, 1710 (1955). 

Fig. 6-13 Schematic diagram of the experiment by Cross and 

Ramsey to verify the complete dynamics of a Compton scattering 

process. A narrow beam of 2.6-MeV gamma rays, collimated by 

lead blocks, fell on a thin foil of beryllium. Photons scattered at 

30° were detected by the flashes of light they produced in an 

anthracene crystal. The associated electrons recoiling at 31.3° 

were similarly detected, and a coincidence circuit recorded these 

events if they were simultaneous to within 1.5 X 10~B sec. Each 

count then represented a single collision between a photon and an 

electron. [After W. G. Cross and N. F. Ramsey, Phys. Rev., 

80, 929 (.1950).] 
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THE DOPPLER EFFECT REVISITED 

In Chapter 5 we treated the Doppler effect as a matter of pure 

kinematics. Our brief use of the effect in discussing 7-ray scat¬ 

tering earlier in this chapter was also essentially kinematic, al¬ 

though we inferred a dynamical consequence by appealing to the 

proportionality of energy to frequency for photons. But now we 

shall apply the energy-momentum arguments to the general 

problem of photon emission from a moving particle. 

Suppose that a particle of mass M and momentum p emits a 

photon of energy Q' at an angle 6 to the initial direction of 

motion of M, as shown in Fig. 6-14. The particle, after the 

emission, has a different mass M', and a momentum p' that may 

differ in both magnitude and direction from the initial momen¬ 

tum p. Thus we have 

Me2 = M'c2 + Q! (6-37) 

p = p' + n Q'/c (6-38) 

(where n is a vector of unit length along the direction 6). We 

shall fix attention on the photon, rather than on the recoiling 

particle, and we shall rearrange the equations to eliminate the 

unwanted quantities. Here is how to do it. Rewrite Eqs. (6-37) 

and (6-38) as follows: 

Me2 - Q' = M'c2 (6-39) 

cp — n Q' = cp' (6-40) 

Square both sides of Eq. (6-39), and form the scalar product of 

each side of Eq. (6-40) with itself: 

(Me2)2 - 2Me2O’ + (Q')2 = (M'c2)2 (6-41) 

(cp - nQ') ■ (cp - nQ') = (cp') • (cp') 

Fig. 6-14 Doppler 

effect, considered 

dynamically in terms 

of energy and 

momentum 

conservation. 
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(6-42) 

i.e., 

(cp)2 - 2cQ'(p • n) + (Q')2 = (cp')2 

or 

(cp)2 — 2cpQ’ cos 6 + (Q')2 = (cp')2 

Subtract Eq. (6-42) from Eq. (6-41): 

((Me2)2 - (cp)2) - 2Mc2Q'(\ - (p/Mc) cos 6] 

= (M'c2)2 - (cp')2 

But 

(Me2)2 - (cp)2 = (Moc2)2 

(M'c2)2 - (cp')2 = (Mo'c2)2 

and 

p/Mc = v/c = 0 

Therefore, 

(M0c2)2 - 2Mc2Q'(\ - 0 cos 6) = (M0'c2)2 (6-43) 

As in our earlier, more restricted discussion of photon emission, 

we denote the decrease of rest energy by Q0, so that 

Mo'c2 = Moc2 - Go 

Therefore, 

(Moc2)2 - (Mo'c2)2 = 2Moc2Q0 - Qo2 

Hence Eq. (6-43) gives us 

2Mc2Q'(1 - 0 cos d) = 2M0c2Q0(\ - Go/2M0c2) 

or 

, = Mo go(l - Qq/2M0c2) 

W M 1 - 0 cos e 

Now Mq/M = (1 — 02)ll2,so that we have, finally, 

(1 — 02)1'2 

Q,V'6)=QWjr^e ((M4) 

where Q is the photon energy for v = 0, as given by Eq. (6-25) 

in our analysis of this special case. 

In Eq. (6-44) we have a statement of the energy of a photon 

emitted in any direction 6 from a moving source, with the effects 

of recoil included. It is identical in form with our purely kine- 
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made result relating the received frequency v' to the proper 

frequency v for a moving source: 

V — V- 
1 — /3 cos 6 

[see Eq. (5-17)].1 

The above analysis may appear rather formidable at first 

sight, but it really isn’t. The initial statements of energy and 

momentum conservation in Eqs. (6-37) and (6-38) are com¬ 

pletely straightforward. And thereafter it is chiefly a matter of 

making systematic use of the extremely powerful relation 

E2 - (cp)2 = Eo2 

by which the energy and momentum of a given particle can be 

combined into that constant quantity, the rest energy. 

In optical spectroscopy the Doppler effect manifests itself 

as a small though quite measurable broadening of spectral lines, 

resulting from the random thermal motions of the emitting atoms. 

In high-energy particle physics, however, it will frequently happen 

that photons are emitted from unstable particles traveling with 

speeds comparable to c, leading to Doppler shifts that are large 

fractions of the total energy of the photon. 

PROBLEMS 

6-1 Suppose one photon has an energy of 200 MeV and is traveling 

along the x axis. Suppose another has an energy of 100 MeV and is 

traveling along the y axis. What is the total energy of this system? 

'Should one simply say “Of course” upon seeing that the photon energy 
and the frequency depend in exactly the same way on the velocity and direc¬ 
tion of the source ? Certainly the quantum picture of electromagnetic radia¬ 
tion would be in a bad way if this agreement did not hold. And perhaps one 
can put it more strongly. Suppose you were a firm believer in relativity 
theory and then began speculating about the quantization of radiant energy. 
The comparison of the expressions for Q' and *' would almost force you to 
conclude that quantum energy and frequency must be proportional to one 
another—in other words, if the quantum idea has any substance, then E/v = 

constant is a necessity. (Relativity provides no hint, of course, as to what 
the value of the constant should be.) It would be tempting to imagine that 
Einstein himself followed some such line of thought when in the same year 
(1905) he published both the relativity theory and the first clear statement 
that E/v = h for photons. (His writings do not, however, support any such 
assumption.) 
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#3 

#1 
4c/5 

3c/5 
#2 

The total momentum? If a single particle had this same total energy 

and momentum, what would be its mass ? In what direction would it 

be traveling? With what speed? 

6-2 A particle as observed in a certain reference frame has a total 

energy of 5 GeV and a momentum of 3 GeV/c (i.e., cp, which has the 

dimension of energy, is equal to 3 GeV). 

(a) What is its energy in a frame in which its momentum is equal 

to 4 GeV/c? 

(b) What is its rest mass in amu? 

(c) What is the relative velocity of the two reference frames? 

6-3 A particle of rest mass m0 and kinetic energy 2moc2 strikes and 

sticks to a stationary particle of rest mass 2mo. Find the rest mass 

Mo of the composite particle. 

6-4 (a) A photon of energy E collides with a stationary particle of 

rest mass mo and is absorbed. What is the velocity of the resulting 

composite particle? 

(b) A particle of rest mass mo moving at a speed of 4c/5 collides 

with a similar particle at rest and forms a composite particle. What is 

the rest mass of the composite particle and what is its speed ? 

6-5 A particle of rest mass Mo is at rest in the laboratory when it 

decays into three identical particles, each of rest mass mo. Two of the 

particles (labeled #1 and #2) have velocities and directions as shown. 

(a) Calculate the direction and the speed of particle #3. 

(b) Find the ratio Mo/mo- 

6-6 (a) A fast-spinning wheel has a recoilless 7-ray source at its 

center and an appropriate absorber at its rim. Choose wheel speed 

and size so that the iridium activity used by Mossbauer would yield a 

just detectable transverse Doppler effect. What is the rim speed ? 

(b) If the absorber were at the center and the source were at the 

rim of the wheel, how would the analysis (and the effect itself) be 

changed ? 

(c) Suppose now that both source and detector are on the rim of 

the wheel, at opposite ends of a diameter. A photon leaving the source 

at position Si (see the figure) must travel along a chord so as to enter 

the absorber at a later time at position Ai. The photons make angles 

with the directions of motion of source and absorber which differ from 

90° by a. The analysis thus requires the full Doppler formula, Eq. 

(5-17) or (6-44). What happens in this case? 

(d) It is possible to consider all three situations from the stand¬ 

point of the frame of the rotating wheel. Both source and detector 

are then stationary in every case, but the photons move in an effective 

gravitational field of magnitude w2r (and therefore increasing pro¬ 

portionally to r from the center of the wheel outward) associated with 
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the centrifugal force. You can use the equivalence principle and 

consider the energy change that this field gives to the photons at any 

particular value of r, 

6-7 A “photon rocket” uses pure radiation as the propellant. If the 

initial and final rest masses of the rocket are M, and M/, show that 

the final velocity v of the rocket relative to its initial rest frame is 

given by the equation 

Mi/M/ = t(c + u)/(c - c)l1/2 

6-8 A thrust-beam space vehicle works by bearing a sort of sail which 

feels the push of a strong steady laser light beam directed at it from 

earth. If the sail is perfectly reflecting, calculate the mass of light re¬ 

quired to accelerate a vehicle of rest mass Mo up to a fixed value of 

gamma. 

6-9 A laser with a mass of 10 kg is in free space with its beam directed 

toward the earth. The laser continuously emits 1020 photons/sec, of 

wavelength 6000 A (as measured in its own rest frame). At t = 0 the 

laser is at rest with respect to the earth. 

(a) Initially, how much radiant energy per second is received at 

the earth? 

(b) The radiation emitted toward the earth causes the laser to 

recoil away from the earth. What is the velocity of the laser relative 

to the earth after 10 years (laser time) have elapsed? 

(c) At the time when the laser is moving with velocity 0c relative 

to the earth, how much less is the rate at which energy is received on 

earth than the original rate when 0 = 0? Evaluate this for t = 10 

years (laser time). 

(d) Show how an observer on earth can explain (to a first ap¬ 

proximation) the continually decreasing rate of reception in terms of 

energy conservation. 

6-10 An atom in an excited state of energy Qo above the ground state 

moves toward a scintillation counter with speed v. The atom decays 

to its ground state by emitting a photon of energy Q (as recorded by 

the counter), coming completely to rest as it does so. If the rest mass 

of the atom is m, show that Q = Qo[\ -f (Qo/2mc2)]. 

6-11 The neutral tv meson (7r°) decays into two 7 rays (and nothing 

else). If a ir° (whose rest mass is 135 MeV) is moving with a kinetic 

energy of 1 GeV: 

(a) What are the energies of the 7 rays if the decay process causes 

them to be emitted in opposite directions along the pion’s original 

line of motion? 

(b) What angle is formed between the two 7 rays if they are 

emitted at equal angles to the direction of the pion’s motion? 
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6-12 An antiproton p of kinetic energy §GeV strikes a proton p 

which is at rest in the laboratory. They annihilate (reaction: p + p —» 

7 i + 7 2), yielding two photons which emerge from the reaction 

traveling forward or backward on the line along which the antiproton 

entered. Take the rest energy of the proton and the antiproton to be 

1 GeV each. 

(a) What energies do the photons have? 

(b) In which direction is each photon heading? 

(c) As measured in a reference frame attached to the incoming p, 
what energy does each of the photons have? 

6-13 A positron with kinetic energy 0.51 MeV collides inelastically 

with an electron at rest, forming a positronium atom which recoils 

freely. The electron and positron forming the positronium annihilate 

in flight, producing two 7 rays. 

(a) What is the speed of the positronium atom? 

(b) What is the maximum possible energy of an annihilation 

photon so produced ? 

6-14 Show that the following processes are dynamically impossible: 

(a) A single photon strikes a stationary electron and gives up 

all its energy to the electron. 

(b) A single photon in empty space is transformed into an elec¬ 

tron and a positron. 

(c) A fast positron and a stationary electron annihilate, produc¬ 

ing only one photon. 

6-15 (a) If a proton of kinetic energy 437 MeV collides elastically 

with a proton at rest, and the two protons rebound with equal energies, 

what is the included angle between them? [R. B. Sutton et al., Phys. 
Rev., 97, 783 (1955), find 84.0° ± 0.2° for the experimental result.] 

(b) If the incoming proton has a total energy of 33 GeV what is 

the included angle between them? 

6-16 The usual theory of the Compton effect considers a stationary 

free electron being struck by a photon, resulting in a scattered photon 

of lower energy. Suppose that a photon (of energy Q) has a head-on 

Q Electron collision with a moving electron (of rest mass mo; see the figure). 

Vv— — « What initial velocity must the electron have if the collision results in 

a photon recoiling straight backward with the same energy Q as the 

incident photon? 

6-17 A stream of very high energy photons (» 10 MeV) is fired at a 

block of matter. Show that the energy Q of the photons scattered 

directly backward is essentially independent of the energy of the in¬ 

cident photons. What is the value of Q ? 

6-18 (a) A photon of energy hv collides elastically with an electron 

at rest. After the collision the energy of the photon is hv/2, and it 
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travels in a direction making an angle of 60° with its original direction. 

What is the value of v? What sort of photon is this? 

(b) A photon of energy hv collides with an excited atom at rest. 

After the collision the photon still has energy hv, but its direction has 

changed by 180°. If the atom is in its ground state after the collision, 

what was its initial excitation energy ? 

6-19 A high-energy photon strikes and is scattered by a proton that is 

initially stationary and completely free to recoil. The proton is ob¬ 

served to recoil at an angle <p = 30° with a kinetic energy of 100 MeV. 

(a) What was the energy of the incident photon? 

(b) What are the direction and energy of the scattered photon? 

6-20 It is believed that Compton scattering by starlight quanta may 

be a mechanism for the energy degradation of high-energy electrons in 

interstellar space. An experiment has been proposed [R. Milbum, 

Phys. Rev. Letters, 10, 75 (1963)] in which this phenomenon can be 

observed directly in the laboratory by scattering a high-energy electron 

beam against the intense flux of visible photons produced by a typical 

laser. Show that for such a process the laboratory energy of the 

scattered photon is given to an excellent approximation (/3 = 1) by 

E2 ~ T me2 
X(1 — cos do) 

1 + X(1 — cos do) 

where X = 22/Ei/mc2 (Ei is the energy of the incident photon) and do 
is the photon scattering angle in the electron rest frame. Show also 

that d, the photon scattering angle in the laboratory, is given by 

tan 6 = 
sin do 

7 (cos do — (1) 

If the incident electron beam is accelerated to an energy of 

6.00 GeV, and the photons are generated by a 6943-A ruby laser (so 

that their energy is 1.79 eV), what is the maximum energy of the 

scattered photons? 
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In relativity, we must complete the law of conservation of 

momentum by extending it to include the time component.. 

The conservation of energy is the fourth equation which goes 

with the conservation of momentum to make a valid 

four-vector relationship in the geometry of space and time. 

R. p. feynman, Lectures on Physics (1963) 



7 
More about 

relativistic 

dynamics 

in this chapter we shall be discussing two main topics. The 

first of these is a more extended discussion of momentum and 

energy, with particular emphasis on the transformation of these 

quantities between two inertial frames. The second topic is the 

concept of force in relativistic dynamics—the way in which it is 

defined, its transformations, and the limitations on its usefulness. 

We begin with an important invariant that can be constructed 

from the measured values of momentum and energy in a given 

frame. 

AN ENERGY-MOMENTUM INVARIANT AND ITS USE 

The recipe for all that we have done so far is to assert that the 

energy and the linear momentum are separate constants for any 

self-contained system. In applying this, however, we take it for 

granted that we choose a particular inertial frame and stick to it 

throughout the calculation. What we shall do now is to ask our¬ 

selves how the measurements in different frames of E and p for 

a system of particles are related. The answer to this question is 

essentially contained in the basic statements of the relativistic 
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momentum and energy of a single particle: 

p = Tmov 

E = Ymoc2 

We have already seen how these can be related through the 

equation 

E2 = (cp)2 + Eo2 

in which E0 (= m0c2) is the rest energy of the particle. 

Now a simple way of restating this result is that, if a particle 

has rest energy £0 (i.e., total energy E0 as measured in the frame 

in which its momentum is zero), then its energy and momentum 

as measured in any other frame can be combined to form an 

invariant quantity as follows: 

E2 - (cp)2 = £o2 

(a relation that we exploited on a number of occasions in Chap¬ 

ter 6). Since this holds for E and p as measured in any frame, 

the measures of energy and momentum for a particle in any two 

frames are related according to the equation 

E2 - (cp)2 = (E')2 - (cp')2 = Eo2 (7-1) 

where E02 thus plays the role of an invariant dynamic property 

of the particle. 

It turns out that Eq. (7-1) applies not merely to a single 

particle, but to any arbitrary collection of particles, in the follow¬ 

ing way. If, as measured in any given frame of reference, the 

sum of the energies of the particles is E and the vector sum of 

all their momenta is of magnitude p, then the value of E2 — (cp)2 

has the same value as the corresponding combination (E')2 — 

(cp')2 as measured in any other frame. This invariant value is 

equal to the square of the total energy E0 of all the particles as 

measured in a frame in which the vector sum of the momenta 

is zero. 

Note especially that, in this extended form of Eq. (7-1), the 

energy E0 is not, in general, merely a sum of rest energies. The 

collection of particles considered may have all kinds of motions 

relative to one another; there need not exist any frame in which 

they are all at rest. 

A formal justification of this application of Eq. (7-1) to an 

arbitrary group of particles will be developed in the next section. 
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Fig. 7-1 Proton- 

proton collision (a) in 

a laboratory frame 

in which one proton 

is initially stationary; 

(b) in the zero- 

momentum frame. 

We can, however, do something toward making it plausible right 

away by pointing out that we frequently, and justifiably, treat a 

collection of particles as though it were a single particle. Con¬ 

sider, for example, an argon atom containing numerous electrons 

in states of rapid motion, and having at its center a nucleus, 

itself a composite of neutrons and protons with large kinetic 

energies. We have no hesitation in describing this atom, from 

the standpoint of the kinetic theory of gases, as a single particle 

endowed with a certain velocity. And the theorem of the inertia 

of energy makes it all the easier to think of this complicated 

structure as being describable in terms of a single mass possessed 

of a certain momentum, despite our awareness of its internal 

structure. 

A good example of the usefulness of Eq. (7-1) in its general¬ 

ized form is provided by the antiproton creation problem that 

we have already treated by a different method. Figure 7-1 (a) 

shows the initial proton-proton system as viewed in the labora¬ 

tory; Figure 7-l(b) shows the same system in its own zero- 

momentum frame. In this latter frame the total energy 2me2 

of the colliding protons must be at least enough to represent four 

proton rest masses. Under these minimal conditions the final 

state, as observed in S', will consist of three protons and one 

antiproton, all with zero kinetic energy. Hence we have the 

following relationships: 

In S': 

E> = 2 me2 = 4moc2 p' = 0 

InS 

mi> Pi m0, 0 

(a) 

In S' 

m, p m,-p 

(b) 

In S: 

E = (mi + wo)c2 P = Pi 
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Thus, by Eq. (7-1), 

(mic2 + moc2)2 —(cp\)2 = (4moc2)2 

Therefore, 

(mic2)2 + 2(rmc2)(moc2) + (moc2)2 — (cpi)2 = 16(moe2)2 

But 

(mic2)2 - (cpi)2 = (moc2)2 

since this represents Eq. (7-1) as applied to a single proton. 

Hence 

2(m\c2)(moc2) + 2(moc2)2 = 16(/moc2)2 

or 

m\c2 = Imoc2 

We are thus enabled to calculate the necessary energy for the 

reaction without considering any of the velocities involved, in 

contrast to the treatment that we presented in Chapter 6 for this 

same problem. 

LORENTZ TRANSFORMATIONS FOR ENERGY AND MOMENTUM 

We shall consider the energy and momentum of a particle as 

measured with respect to two reference frames that are related 

via the usual Lorentz transformations. Let its velocity be u as 

measured in S, and u' as measured in S' (Fig. 7-2). Then by 

the velocity-transformation formulas we have 

, ux — v 
Ux 1 — vux/c2 , 

_ VT(o) 
v 1 — VUx/c2. 

where 7(f) = (1 - v2/c2)~112 (7-2) 

Fig. 7-2 Particle 

having an arbitrary 

velocity u with 

respect to frame S. 

With the help of the 

velocity-addition 

laws, the values of its 

energy and its mo¬ 

mentum components 

as measured in S and 

S' are shown to be 

linearly related. 

s 

p 

o 
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The energy and momentum of the particle in the two frames are 

as follows: 

In S: 

E = 7(u)moc2 

Px = y(u)niQUz > 

Pv = y(u)mouy 

where 7(«) = (1 — u2/c2)~l/2 

In S': 

(7-3) 

E' = 7(u')moc2 I 

Px = y(u')moux'\ where T(m') = (1 — u'2/c2)~112 (7-4) 

py' = y(u')moUy') 

The one big step in relating these two sets of dynamical quantities 

is to express 7(u) in terms of quantities measured in S', or 7(m') 

in terms of quantities measured in S. Let us take the latter. We 

have 

7(«') = [1 - (u')2/c2]~1/2 

= [1 - (uz’)2/c2 - (uy')2/c2]-1/2 (7-5) 

We shall treat this by easy stages. First, consider the following: 

1 - («/)V = I - («* - V) 

C2(l - VUx/c2)2 

= (1 - vux/c2)2 - (uz - 0)2/c2 

(1 — vux/c2)2 

, 2,2 2,2., ,2.2 
1 ~ Ux /C ~ V /C + (VUX/C ) 

(1 - VUx/c2)2 

Therefore, 

, , ,.2 , 2 (1 - «x2/c2)( 1 - V2/C2) 

1_("l)/C =-(1 - vux/c2)2- 

Next, note that, from equations (7-2), we have 

'\21r2 - foVX* ~ iL 
i u ’ ' (1 - IMx/c2)2 

Subtracting Eq. (7-6b) from (7-6a), we get 

, ,,.2,2 (1 - «Vxi - v2/c2) 

1-(M)/C =-(1-W^- 

(7-6a) 

(7-6b) 

in which we recognize the squares of the reciprocals of 7(m'), 

7(m), and 7(d). 
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We have, in fact, 

T(//') = y(v)7(u)(l - vux/c2) (7-7) 

Now taking this result in conjunction with the first of equations 

(7-4), we have 

E' = J(v)[y(u)moc2 - vy(u)m0uz] 

which, by reference to equations (7-3), can be expressed as 

follows: 

E' = 7(u)(E - vPx) (7-8) 

Again, taking the equation for px', we have 

Px = y(v)y(u)mo(ux — u) 

i.e., 

Px' = y(v)(px - vE/c2) (7-9) 

Finally, taking the equation for we find 

pj = y(u)mouy 

Therefore, 

Py' = Pu (7-10) 

Let us collect together the transformations from S to S' ex¬ 

pressed by Eqs. (7-8), (7-9), and (7-10), plus the corresponding 

transformations from S' to S: 

LORENTZ TRANSFORMATIONS 
FOR MOMENTUM AND ENERGY 

Px = y(Px - ve/c2) Px = 7 (px' + vE'/c2) 

II <5 
II 

Px = Px Px = Px 

E’ = y(E - vpx) E = 7(E' + vpx0 

with y = (1 - v2/c2)- "1/2, where v is the velocity of S' 

as measured in S 

(7-11) 

One striking feature of equations (7-11) is that the momen- 
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turn components and the energy appear in linear combinations 

only; no such simple connection exists in Newtonian mechanics. 

This linearity is not merely interesting; it has consequences of 

great value. For, although we obtained the equations in terms 

of a single particle, there is nothing to stop us from taking E 

and p as the total energy and the total momentum of a whole 

collection of noninteracting particles with arbitrary velocities. 

It is just a matter of writing down equations like (7-8), (7-9) 

and (7-10) for each particle separately and adding them all up. 

Thus equations (7-11), in turn, hold good for any system of 

particles, and so (as we argued more informally in the last section) 

does the invariance expressed by Eq. (7-1). 

An example. Elastic scattering of identical particles. Let us 

see how the energy-momentum transformations can be applied 

to the problem, already discussed in Chapter 6, of the symmetrical 

elastic collision of two identical particles—e.g., two protons. 

Figure 7-3 shows such a collision as observed first in the zero- 

momentum frame S', and then in the laboratory frame S' (in 

which one of the particles is assumed to be initially stationary). 

As observed in S', each particle has a momentum of magnitude p' 

both before and after the collision, but the collision turns each 

momentum vector through 90°. The velocity v relating S' and S 

is defined by Eq. (6-20): 

which expresses the general connection, as we first propounded 

it in Eq. (1-13), relating velocity, momentum, and energy for 

any particle. We can use it here because v is not only the relative 

velocity of S and S', but also the speed, as measured in S', of 

Fig. 7-3 Two views 

of a symmetrical type 

of elastic collision 

(a) in the zero- 

momentum frame, 

(b) in a frame in which 

one particle is 

initially stationary. 

In S’ Q In 5 
t 

P 

m, 

(a) (b) 
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the particle that was initially stationary in S. (It follows, from 

the symmetry of this particular problem, that it is also the speed 

in S' of the other particle.) 

Let us consider the state of affairs for each particle after 

the collision. 

In 5': 

Px = o 

Pv' = P' (7-13) 

E' = me2 = 7(v)moc2 

Using the equations for transforming momentum components 

between different frames, we have: 

In S: 

Px = V(v)(Px + vE'/c2) 

In this expression we put px' = 0, and [using Eq. (7-12)] we have 

vE'/c2 = p'. Thus 

Px = y(v)p' 
_ _ / _ J 
Pv — Pv ~ P 

Therefore, 

E* 
Px 

1 

yfr) 
(7-14) 

where 8 is the angle between the proton directions after scattering, 

as observed in the laboratory frame [Fig. 7-3(b)]. 

Clearly tan (8/2) < 1, so 8/2 < 45°, 8 < 90°. To get y(p) 

in terms of the initial total energy Ej of the incident proton (as 

measured in the laboratory), we can again make use of the energy- 

momentum invariant of Eq. (7-1): 

(2mc2)2 = (Ei + mac2)2 — (cpyf 

= [EX2 - (cpi)2} + lEimac2 + (m0c2)2 

= (/hoc2)2 + 2E\moc2 + (/hoc2)2 

Therefore, 

(7-15) 

It is then a straightforward matter to relate Eq. (7-14) to the 

rather different statement of the result as given in Eq. (6-31). 
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FOUR-VECTORS 

You will see that the array of equations (7-11) bears a striking 

resemblance to the set of Lorentz transformations for space and 

time [cf. equations (3-16)]. Taking the momentum components 

to fill a role analogous to that of the position coordinates, then 

the comparison of equations (7-11) with the original Lorentz 

transformations shows that E/c2 is the quantity analogous to t. 

We can say, in fact, that the three components of a linear mo¬ 

mentum vector transform like the three components of a position 

vector, and the total energy (a scalar quantity) transforms like 

the time. The invariance of the combination E2 — (cp)2, as 

expressed in Eq. (7-1), is one immediate consequence of this. 

The rest energy E0 is the invariant of the energy-momentum 

transformations, just as the space-time interval 5 is the invariant 

of the Lorentz transformations proper. 

In Newtonian mechanics we are accustomed to thinking of 

measures of space as being definable without reference to time, 

and vice versa. Likewise, we are accustomed to thinking of 

momentum and energy as representing essentially different (al¬ 

though to some extent related) properties of a body. We have 

now seen how these distinctions, both kinematic and dynamic, 

are blurred in special relativity. The specification of time in one 

system involves both position and time in another system; the 

specification of energy involves both energy and momentum in 

another system. Because of this, and without being in any sense 

metaphysical, it is entirely appropriate to enlarge the framework 

of our formal description of things by thinking of a single four¬ 

dimensional space-time structure, rather than of a three-di¬ 

mensional spatial structure that takes on different appearances 

at different times. In Chapter 3 we alluded briefly to this uni¬ 

fication in the description of point events. We shall now express 

it more formally by saying that the kinematic state of a particle 

is expressible by a single 4-vector whose components are (x, y, 

z, ict) and whose length is s\/ — 1 measured in any frame: 

-i2 = x2 + y2 + z2 + (ict)2 

Likewise, the dynamical state of a particle is expressible by a 

single 4-vector whose components are (Px,Pv,pz, iE/c) and whose 

“length” (in momentum units) is iE0/c as measured in any frame: 

-Eo2/c2 = p2 + Py2 -I- Pz2 + (iE/c)2 
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The Lorentz transformations can then be regarded as a prescrip¬ 

tion for transforming the various components of a 4-vector from 

one set of axes to another—often described as the “mapping” of 

the vector onto various coordinate systems in the four-dimen¬ 

sional world. This way of representing the relativistic scheme of 

things is attractive in a formal sense, and can also be very useful 

if one has once learned to exploit it—which primarily means 

developing the appropriate fluency in matrix algebra. We shall 

not go any further with it here, however, since it is not essential 

and really adds nothing to the basic physics of relativity. 

FORCE IN RELATIVISTIC MECHANICS 

In contrast to the Newtonian conception, it is easy to show that in 

relativity the quantity force, in general, is not codirectional with 

the acceleration it produces ... It is also easy to show that these 

force components have no simple transformation properties ... 

All these modifications, important as they are from the mathe¬ 

matical point of view, do not radically affect the conception of 

force. Yet an important point should be noted: on grounds of 

the rejection of an absolute simultaneity of two distant events, 

special relativity comes to the conclusion that action at a distance 

has to be excluded as a legitimate physical notion. 

Max Jammer, Concepts of Force (1957) 

In all of our discussion of relativistic dynamics so far, we 

have placed an almost exclusive emphasis on the use of the energy 

and momentum conservation laws for an isolated system of 

particles. We have tried to give some feeling for the variety of 

problems that can be discussed in these terms. But when all is 

said and done, this approach is not always the most convenient 

or useful. Many, many problems in dynamics can best be treated 

(and perhaps can only be efficiently treated) in terms of the motion 

of particles under the action of a given set of forces. Take the 

Rutherford scattering of a particles, for example. Granted that 

the force becomes vanishingly small at large separations be¬ 

tween two particles (and it is this assumption that underlies all 

the calculations we have done in Chapter 6 and in this chapter), 

one can make perfectly correct statements about the relation 

between final directions and velocities of the colliding nuclei. 

But this does not tell us the probability that an a particle will in 

fact be deflected through a certain angle. Only when we put in 
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the explicit law of force do we find answers to such questions as 

these. And the discovery and specification of laws of force is a 

central concern of physics. It is certainly important, therefore, 

to know how to transform forces and equations of motion so as 

to give a description of them from the point of view of different 

inertial frames. Since in special relativity the acceleration is not 

an invariant, we know that we cannot enjoy the simplicity of 

Newtonian mechanics, but we can certainly arrive at some useful 

and meaningful statements. 

The starting point, which we indeed made use of in the 

initial stages of our approach to relativity (see Chapter 1) is 

Newton’s law in the form 

F = ^ ^ (mv) where m = mo(l — t?2/c2)-1/2 (7-16) 

We take this as a definition of F. It is a natural extension (and 

the simplest extension) of the nonrelativistic result. It is not a 

statement that can be independently proved. On the other hand, 

if the analytical form of F is given, in terms of coordinates, 

velocities, etc., we must certainly demand that the left and right 

sides of Eq. (7-16) transform in the same way under Lorentz 

transformations. Assuming that this necessary condition has 

been met, the transformations of the components of dp/dt tell 

us how force components transform in special relativity. 

Our approach to the problem will be as follows: At any 

instant a particle has a well-defined velocity v as measured in a 

laboratory frame of reference. We can picture the particle as 

being instantaneously in a rest frame that has this velocity v 

with respect to the laboratory. We shall imagine that, as mea¬ 

sured in the rest frame, a force F0x is applied parallel to v, causing 

an acceleration a0x• The mass as measured in this frame is just 

the rest mass m0. Hence we have 

Fox = moaox (7-17) 

Now in the laboratory frame we have a momentum given by 

m0v 
px - TffloD (j _ v2/c2)U2 

and hence we judge the force to be Fx, where 

f _ dP* _ m o dv -1/2 
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If we put dv/dt = ax (the observed acceleration in the laboratory) 

we have 
2 2 

_ woflx mo(v /c )ax 
Z (1 - l?2/c2)l/2 + (1 - 1>2/c2)3/2 

which, when we collect terms, simplifies to 

Fx = y3moax (7-18) 

There is, however, a very simple connection between ax 

and a ox-' 

ax = ^ a0x (7-19) 

This is the particular case of the transformation of accelerations 

along x for u0x = 0 [cf. Eq. (5-24)]. Thus Eq. (7-18) can be 

written 

Fx = 73w0 ^ = moa0x 

i.e., 

Fx = F0x (7-20) 

This is a striking result. Despite the change of the measures of 

mass and acceleration in the two frames, the measure of the x 

component of force remains the same. 

When we make a similar calculation for the transverse force, 

we find that this invariance does not hold. In the instantaneous 

rest frame we have 

Foy = moaoy (7-21) 

In the laboratory frame, the force Fy applied perpendicular to 

the momentum vector my will, during some very brief interval of 

time, leave the magnitude of the velocity unaltered; it merely 

changes the direction of y slightly by introducing a small trans¬ 

verse component. Thus to a good approximation (which be¬ 

comes perfect in the limit At —> 0) the mass remains unchanged 

at ym0, and the transverse impulse can be written 

Fy At = ymoAvy 

Hence we have, in this case, 

Fy = ymody (7-22) 

Again there is a simple relation between the accelerations in the 
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two frames, given that one of them is measured in the rest frame: 

1 
av ~ y% °0y (7-23) 

this being a special case of Eq. (5-26). We therefore have 

Fy = 7m0 ^ = y m°a°» 

i.e., 

= (7-24) 

In the above results one can discern the feature (mentioned 

in the quotation at the head of this section) that in general force 

and acceleration are not parallel vectors. Combining Eqs. (7-18) 

and (7-22) we have 

Fy_1^ Oy 

Yx “ 72 ax 

Only in the instantaneous rest frame of a body (7 = 1) can one 

guarantee that F, as defined by the time derivative of momentum, 

is in the same direction as the acceleration. 

It is perhaps worth pointing out that the special cases of 

force transformation represented by Eqs. (7-20) and (7-24) can 

be derived in simple physical terms.1 For the x transformation, 

we can consider the work done by the force, and the resulting 

increase of energy as manifested in a mass increase: 

A E = FxAx = c2 Am 

where 

Ax = v A t 

Am = A[(l - uVc2)1^] 

movAv 
(1 _ y2/c2)3/2c2 

These at once give us 

Fx = y3moax 

which reproduces Eq. (7-18). 

To relate the acceleration ax to the acceleration a0x as mea¬ 

sured in the instantaneous rest frame of the particle, we take the 

equations for uniformly accelerated motion: 

•See, for example, W. P. Ganley, Am. J. Phys., 31, 510-516 (1963) for a nice 

discussion. 
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At time t: 

x = xi, (say) 

At time t + At: 

jc+Ajc = A:i+eA/ + %ax(At)2 

The space and time coordinates (jc, t) and (x + Ax, t + At) 

define two events as observed in S. Let us obtain the coordinates 

of these same events as observed in the rest frame S' of the 

particle. To do this we use the Lorentz transformations: 

jco = *y(jc — vt) 

to = 7(t — vx/c2) 

Applying these to the two events in turn, we have the following: 

First event: 

*o = 7(*i — vt) 

t0 = 7(/ - vxi/c2) 

Second event: 

xo + Ax0 = 71*1 + vAt + \ax(At)2 - v(t + A/)] 

= 7[*i + iax(At)2 - vt] 

to + Ato = y[t + Ar - (v/c^ixi + v At + ^(Ar)2}] 

Subtracting, 

A*0 = y $ax(At)2] (7-25) 

Ato = 7[(1 - v2/c2) At - UvaJc^At)2] 

If At is sufficiently short, the second term in the equation for At0 

becomes neghgible compared to the first, and we have 

Ato ~ 7(1 - v2/c2)At = At/y 

Substituting At = 7 At 0 in Eq. (7-25) gives us 

Axo = 7[i«I(7A(o)2] 

or 

Axo = i(73flx)(A/o)2 

But this is the equation of uniformly accelerated motion for a 

particle initially at rest. Thus the acceleration a0x as measured 
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in the rest frame is given by a0x = 7 sax, which reproduces 

Eq. (7-19). Thus we have reproduced both Eqs. (7-18) and 

(7-19) and can combine them to demonstrate the invariance of 

Fx. This development may seem unduly long-winded, because 

we have carefully spelled out the transformations. It can be 

briefly (though somewhat glibly) summarized by saying that time 

dilation causes the time Ato in the rest frame to correspond to 

7 At0 in the frame S, and that Lorentz contraction causes Ax0, 

the distance traveled in the rest frame in consequence of the 

acceleration, to correspond to Ax0/V in S. On this basis we would 

arrive at once at the relation 

A*0/7 = £a*(7A/o)2 

However, where nonproper measurements are involved, as they 

are here, it pays to be methodical and explicit. 

To obtain the transformation of Fy, we set up Eq. (7-22) 

and then argue the transformation of transverse acceleration 

from the two statements 

Ay = 2<3„(A/)2 

Ay' = £ao„(Af')2 

with Ay = Ay' and At = 7 At'. In this case, since the motion 

takes place at a constant value of x' in the rest frame, we can 

apply time dilation directly without any qualms. 

MAGNETIC ANALYSIS OF RELATIVISTIC PARTICLES 

There is one direct application of force laws in relativistic motions 

that we could riot possibly omit from a chapter having so much 

to do with atomic particles. This is the deviation of a charged 

particle in a magnetic field. It provides one of the chief diagnostic 

tools in particle physics, because it reveals both the sign of the 

charge and the magnitude of the momentum of a particle. The 

bubble-chamber photograph in Fig. 7-4 is a beautiful example 

of the use of the technique. The basis of it is the fact that a moving 

charge q in a magnetic field B experiences a transverse force 

proportional to its velocity, according to the vector force law 

F = const, (qv X B) 

In the MKS system of measurement, the value of the constant is 
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Fig. 7-4 Hydrogen bubble-chamber photograph of the 

production of two unstable neutral particles (K° and A0) 
by the collision of air ~ meson with a proton in a 500- 

liter liquid hydrogen bubble chamber developed by Prof 

L. W. Alvarez and his group at Berkeley. (Photo 

courtesy of Prof. Alvarez and Lawrence Radiation 

Laboratory, Berkeley, Calif.) The ir ~ enters from the 

left and its track ends abruptly, marking the point of 

origin of the particles K° and A0. These subsequently 

decay into pairs of charged particles (K° —* w+ + w~, 

A0 —» 7t“ + p), giving two pairs of forked tracks. 

Analysis of the tracks of the charged particles in each 

fork shows that the total linear momentum vector in each 

fork is directed outward from the point where the initial 

interaction took place. This picture was used as an 

example by Prof. D. A. Glaser, inventor of the bubble 

chamber, in his Nobel lecture in 1960. (See Nobel 

Lectures, Physics, 1942-1962, Elsevier, 1964.) 

unity, by definition. If the field direction and the particle velocity 

are perpendicular, the motion of the particle remains in a plane 

perpendicular to the magnetic field. At every instant, the force 

exerted on the particle is at right angles to the momentum vector 

p, and the magnitude of the force is given by 

F = qvB (MKS system) 
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Thus in a short time At the particle acquires a transverse mO' 

mentum given by 

Ap = F At = qvBAt 

This means that the momentum vector is turned through a small 

angle Ad such that 

A0 = ^ = **At (7-26) 

Hence the velocity vector has turned through Ad also, in a time 

during which the particle has traveled a distance As such that 

As = v At 

But As and Ad define a radius of curvature R, and in fact we have 

vAt 

-JT (7-27) 

Combining Eqs. (7-26) and (7-27) we have 

p = qBR (MKS units) (7-28) 

It is interesting to note that this is precisely the same result as 

one gets from Newtonian mechanics, except that in Eq. (7-28) 

one must remember that p = 7m0u, not m0v simply. In very 

many cases one can be sure that q = dte, so that a knowledge 

of B and a measurement of the radius of curvature of the path 

will determine the momentum of the particle. Figure 7-4 shows 

a whole collection of such motions, and exemplifies the wealth of 

information that may be revealed by a single picture with the 

magnificent techniques that have been developed in particle 

physics. 

GENERAL FORCE TRANSFORMATIONS; ACTION AND REACTION 

In the section before last we considered some cases of force 

transformation that were quite special, because one of the two 

frames chosen was the instantaneous rest frame of the particle. 

But we can extend the analysis so as to yield transformations of 

force between any two frames, through the definitions 

F = 
dp 

dt 
F' = 

dt' 
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The calculation involves the use of the relativistic transformations 

for velocity, momentum, and energy (as well as for x and /), 

so for convenience we shall restate here a minimal number of the 

formulas needed to obtain the two basic forms of the trans¬ 

formation—for force components either parallel or perpendicular 

to the direction of relative motion of two reference frames. 

Let the momentum and the energy of a particle, as measured 

in S, be p and E at the space-time point (x, y, z, t), and let p' 

and E' represent the momentum and the energy of the particle 

as measured in S' at the same space-time point (x', /, z', t'). 

Then we have 

x' = 7(x - vt) 

y' = y 

t' = 7(/ - vx/c2) 

(7-29) 

' _ Ux ~ v 1 
Ux 1 — VUx/c2 l 

„' =_“y/7_f 
v 1 — VUx/c2 J 

P*' = 7 (j>x - uE/c2) 

Pu' = Pv 

E' = 7 (E - vpx) 

(7-30) 

(7-31) 

Since the force F' on a particle, as measured in S', is defined by 

F' = dp'/dt' 

it follows from equations (7-31) and the Lorentz transformation 

for time that 

dpj y(dP±_}L 

p' = dp* _ dt = \dt °2 dt) 

dt' M 7 A _ V_ dx\ 

dt V c2 dt) 

i.e., 

= Fz - (v/c2) dE/dt 

Z 1 — VUx/c2 
(7-32) 

Now dE/dt is the rate of change of the particle’s energy as mea¬ 

sured in S. In Newtonian mechanics we could immediately 

identify this with the quantity F • u, the rate at which the force F 

does work. This also holds good in relativistic dynamics, as we 

can see by the following argument: 
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We have 

E2 _ c2p2 + £q2 _ c2(p . p) + Eq2 

Therefore, 

EdE/dt = c2p • (dp/dt) 

= c2p • F 

But £ = me2. Therefore, 

dE/dt = F- (p/7w) = F • u 

Hence Eq. (7-32) becomes 

_ Fx - (l-/c2)(F • u) 

1 - vux/c2 

Similarly (but much more simply), we find 

(7-33) 

£ ' = __ 
* 7(1 - U«x/C2) 

(7-34) 

(Note that, if u = 0, we have once again the simple results 

Fx' = Fx, Fy = Fy/y.) An equation exactly like Eq. (7-34) 

holds for the relation between F/ and Fz, and the expressions 

for Fx, Fy, Fz in terms of S' measurements involve writing equa¬ 

tions equivalent to Eqs. (7-33) and (7-34) with the sign of v 

reversed. 

Equation (7-33) is a very interesting one, in that it tells us 

that the measure of a force in one frame involves the measure of 

the power developed by the force in another frame. It is one 

more manifestation of the intermingling of space and time mea¬ 

surements inherent in the relativistic description of things, and 

has no counterpart in classical mechanics. It has been com¬ 

mented on as follows1: 

In the classical mechanics there have always been two strains of 
thought. The two aspects of “force” as “the time rate of change 
of momentum,” and as “the space rate of change of energy,” 
have with different writers been given different degrees of 
prominence. Galileo developed the former, Huyghens the latter. 
In the light of four-dimensional vectors the two ideas become 
unified, and differ only as partial aspects of a greater concept.... 

Pursuing this last comment, we may note that in a four-dimen- 

■By E. Cunningham, in an old but excellent book, Relativity, The Electron 

Theory and Gravitation, Longmans, Green, London, 1921. 
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sional space-time world, the force components Fx, Fy, and Fz rep¬ 

resent only three of the components of some 4-vector. What is 

the fourth component, and what is the vector? The clue is already 

provided by Eq. (7-33), in which the quantity F • u appears. A 

simple calculation, much like that for the transformation of Fx', 

leads to the following result: 

F'-u' 
(F • u) - vFx 

1 — VUx/c2 
(7-35) 

The quantity (F • u)/c has the same dimensions as the space 

components of F and one can, with a little extra juggling, con¬ 

struct an invariant from these four quantities. The exercise is a 

rather artificial one, however, and only serves to emphasize how 

momentum and energy, rather than force, provide the founda¬ 

tion of relativistic dynamics. 

It is worth pointing out that one of Newton’s basic assertions 

about forces between bodies—the equality of action and reaction 

—has almost no place in relativistic mechanics. It must essentially 

be a statement about the forces acting on two bodies, as a result 

of their mutual interaction, at a given instant. And, because of 

the relativity of simultaneity, this phrase has no unique meaning 

unless the points at which the forces are applied are separated by 

a negligible distance. It was in this sense that Max Jammer, in 

the remarks quoted earlier in this chapter, asserted that the con¬ 

cept of action at a distance has no place in relativistic dynamics. 

Even if the force on one object is known to be solely due to the 

presence of some other object, we have no unique way of de¬ 

scribing their mutual interaction; we can only describe the force 

exerted on either body, separately, at some given point in space- 

time. This does not imply that we can no longer write down a 

quantitative statement of the force exerted on one body by 

another, as described in a given reference frame.1 What the 

relativistic analysis does do, however, is to compel us to conclude 

that, according to measurements in a given inertial frame, the 

forces of action and reaction are in general not equal and op¬ 

posite, and so the total momentum of the interacting particles is 

not conserved, instant by instant. This fact leads, if one wishes 

to hold to conservation of momentum, to the idea that momen¬ 

tum (as well as energy) may reside in the field that describes the 

interaction of separated particles. As far as the particles alone 

are concerned, conservation of momentum applies only when 

‘We shall, in fact, be doing this repeatedly in Chapter 8. 
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one compares the initial and final situations (before the inter¬ 

action begins and after it has ceased). During the interaction 

itself, the momentum of the interaction field must be brought in 

if one is to have total momentum conservation at all times in all 

frames of reference. 

It is another consequence of the force transformations that 

if, as measured in one frame, the force on a body depends on its 

position but not on its velocity, then as measured in other frames 

the force depends on the body’s velocity as well as on its position. 

Probably the most important example of this is in electromag¬ 

netism. The force on a moving electron due to stationary charges 

is given simply by Coulomb’s law. But if we imagine ourselves 

in a frame in which the charges that caused the force are moving, 

then the force on the electron depends on its velocity as well as 

on the motion of the other charges. It involves, in fact, the mag¬ 

netic force between what are effectively two currents. In this 

result we see the germ of the development by which electric and 

magnetic fields can be shown to be intimately related. To do it 

justice, however, this subject needs a full discussion on its own 

account; the hint that we have just given is clearly quite in¬ 

adequate. The final chapter of this book is therefore devoted 

entirely to a discussion of the elements of this fascinating 

development. 

PROBLEMS 

7-1 A K meson traveling through the laboratory breaks up into two 
7r mesons. One of the w mesons is left at rest. What was the energy of 
the K? What is the energy of the remaining w meson? (Rest mass of 
K meson = 494 MeV; rest mass of w meson ~ 137 MeV.) 

7-2 An electron-positron pair can be produced by a 7 ray striking a 
stationary electron: 

7 + e~ —* e~ + e+ + e~ 

What is the minimum 7-ray energy that will make this process go? 

7-3 Suppose that a certain accelerator can give protons a kinetic 
energy of 200 GeV. The rest mass wo of a proton is 0.938 GeV. 
Calculate the largest possible rest mass Mo of a particle X that could 
be produced by the impact of one of these high-energy protons on a 
stationary proton in the following process: 

p+p—*p+p + X 
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7-4 A particle of rest mass M collides elastically with a stationary 
particle of rest mass m « M. If the initial velocity of M is such that 
7 = M/m, show that the maximum angle through which M can be 
scattered is approximately m/y/ZM. Show also that the maximum 
recoil angle of m is 90°. 

7-5 A particle of rest mass m and velocity v collides elastically with a 
stationary particle of rest mass M. Express the recoil and scattering 
angles in terms of the corresponding angles in the zero-momentum 
system. Show that your answers reduce to the nonrelativistic ones 
if D«C. 

7-6 The kinetic energy K of a system in the lab frame is related to the 
kinetic energy K* in the center-of-mass frame in the nonrelativistic 
case by the expression K = K* + MV2/l, where M is the total mass 
of the system and V is the velocity of the center of mass. What is the 
analogous expression for the relativistic case? Show that it reduces 
to the above result if all speeds are much less than c. 

7-7 (a) A photon of energy E travels toward the origin O of a co¬ 
ordinate system S, making an angle a with the y axis (see the figure). 
Using the Lorentz transformations for momentum and energy [equa¬ 
tions (7-11)] calculate the energy of the photon in a frame S' in which 
it is observed to travel straight down the y' axis. 

(b) Apply the same kind of analysis to the Mossbauer problem 
(Problem 6-6) by calculating the energy of the received photon in the 
frame in which the absorber on the rim of the wheel is instantaneously 
at rest. Note that this gives us an alternative method for deriving the 
Doppler-effect formula. 

7-8 Problem 5-18 asked you to analyze the problem of an object 
that travels for a time t (earth time) at a constant acceleration of 
9.8 m/sec2 (g) in its own rest frame. Solve this problem again, using 
the result Fx = Fx' together with the variable time-dilation factor 7(c) 
that relates elements of time dt and dt' at any given stage. 

7-9 The cyclotron is a machine used to accelerate positive ions to 
energies of a few MeV (see the figure). The dees are metal shells which 
shield out electric fields but not magnetic ones. There is thus effectively 

Vertical cross section of cyclotron Horizontal cross section 
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a constant magnetic field B throughout the vacuum tank and an 

alternating (sinusoidal) electric field in the small gap between the dees. 

If this field is in phase with the ions, they receive a “kick” from it 

every half-cycle. These “kicks” increase the energy, and hence the 

radius of the orbit of the ions until they eventually exit through the 

window. 

(a) What is the frequency at which the ions circle the cyclotron ? 

Show that your answer is independent of the kinetic energy of the 

ions if v « c. Evaluate your result numerically for protons if B = 

1.5 MKS units (webers/m2). 

(b) If the maximum usable diameter inside the dees is 60 cm, what 

are the maximum kinetic energy and velocity such a proton can attain ? 

(c) If the protons receive a “kick” of 105 volts every time they 

cross the gap, how many revolutions do they make before leaving 

through the window? How long does the whole process take? 

(d) What technical difficulties arise if the maximum usable diam¬ 

eter is greatly increased (to 6 m, for example) ? 

Radius of curv¬ 
ature = 34.0 cm 

LJl 
11+ r* 

7-10 In a laboratory bubble-chamber experiment [H. Whiteside, J. N. 

Palmieri, and R. A. Burnstein, Am. J. Phys., 34, 1005 (1966)], a K~ 

meson was observed to interact with a stationary proton, yielding a 

7T+ meson and an unknown (X) particle, giving a set of three tracks 

as shown in the figure. The magnetic field inside the bubble chamber 

was 1.70 ± 0.07 webers/m2 (MKS units). 

(a) Why do the tracks that originate at the vertex O (the inter¬ 

action point) indicate that the K- was at rest at the time of the in¬ 

teraction? 

(b) Using the table below, identify the unknown particle. 

Name and symbol 
Rest mass, 

MeV 
Charge, 

units of e 

Positron, electron e+, e~ 0.511 ±1 

Muon P+, 105.7 ±1 

Pi meson 7T+, 7T — 139.6 ±1 
K meson K+, K" 493.8 ±1 
Proton P+ 938.3 1 

Neutron n 939.6 0 

Lambda A° 1115.4 0 

Sigma plus 2 + 1189.4 1 

Sigma zero 2° 1192.3 0 

Sigma minus 2- 1197.2 -1 

Xi zero S° 1314.3 0 

Xi minus H“ 1320.8 -1 

Omega minus a- 1675 -1 
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What led me more or less directly to the special theory of 

relativity was the conviction that the electromotive force 

acting on a body in motion in a magnetic field was nothing 

else but an electric field. 

ALBERT EINSTEIN (1952) 

From a letter to the Michelson Commemorative Meeting of the Cleveland 
Physics Society as quoted by R. S. Shankland, Am. J. Phys., 32, 16 (1964), 
p. 35. 



8 
Relativity 

and 

electricity 

by the end of the 19th century, the basic phenomena of classical 

electricity and magnetism were well known. Electrically charged 

bodies exerted forces upon each other, and the effects could be 

described in terms of electric fields. Electrically neutral wires, in 

which currents flowed, exerted forces upon each other and upon 

magnets, and the effects could be described in terms of magnetic 

fields. A time-varying magnetic field could cause a current to 

flow in a conducting circuit—the phenomenon of electromagnetic 

induction. And electrical disturbances (e.g., radio waves) could 

radiate out into space. James Clerk Maxwell had, by 1864, 

developed a set of equations which correctly described the re¬ 

lationships among electric fields, magnetic fields, and stationary 

and moving electric charges. The relativity principle then de¬ 

manded that these relationships remain exactly the same no 

matter what inertial coordinate system the observations were 

referred to. 

The relativity principle imposes severe conditions upon any 

theory. Suppose, working in an inertial coordinate system S, we 

discover the law which describes the electric field produced by a 

moving charge. In a different inertial coordinate system S', the 

same charge will be observed to be moving with a different 
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velocity, and the electric field may have different values. If we 

know how to carry out the transformations that relate measure¬ 

ments in S to measurements in S', then we can find the form of 

the law that describes, in S', what connection exists there be¬ 

tween a moving charge and its electric field. The relativity 

principle requires that the law be exactly the same as that found 

in S. 

The relativity principle may be used in different ways. If 

we think we know a law of nature which connects various ob¬ 

served quantities, we can use the relativity principle to find out 

how the observed quantities must transform. If we already know 

(i.e., think we know) how observed quantities transform, we can 

test whether or not a theory does satisfy the relativity principle. 

If not, then something is wrong. Proceeding in this way, Einstein 

found that Newtonian mechanics did not pass the test, and he 

was able to propose appropriate modifications. 

As we have repeatedly seen in this book, the departures from 

the predictions of Newtonian mechanics become increasingly 

greater as the velocities involved approach the velocity of light. 

This need occasion no surprise. After all, the validity of Newton’s 

mechanics had originally been tested only at low velocities, and 

it is always risky to apply a law outside its validated range. 

What is surprising—indeed astonishing—is that Maxwell’s 

laws of electricity and magnetism have required no changes at 

high velocities. The experimental observations available to 

Maxwell of the effects produced by moving charges were all made 

on slowly moving charges. Nevertheless, we find today that 

Maxwell’s laws remain accurately correct, even when the ve¬ 

locities of the charges approach very closely the speed of light! 

In fact, it was Einstein’s demand that the Maxwell equations 

correctly represent electromagnetic phenomena in any inertial 

coordinate system that enabled him to obtain the transformation 

expressions for electric and magnetic fields. 

Historically, electromagnetic theory preceded special rel¬ 

ativity theory—as is attested by the fact that Einstein’s great 

1905 paper bore the title “On the Electrodynamics of Moving 

Bodies.” But now we have relativity theory, and it stands on its 

own foundations. It is a powerful tool, and it can be used to 

develop electromagnetic theory. We shall not undertake any¬ 

thing as ambitious as that in this chapter, but will do enough to 

illustrate how, by the application of relativistic ideas and tech¬ 

niques, the intimate connection between electric and magnetic 
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phenomena can be demonstrated. And, by way of introduction, 

we shall first review those results in electromagnetism that will 

be relevant to our discussion. 

COULOMB’S LAW 

The experiments of Coulomb and others established that the 

force which a stationary charge qy exerts upon a stationary 

charge q2 is directly proportional to the magnitudes of the 

charges, inversely proportional to the square of the distance be¬ 

tween them, and in the direction of the line connecting the two 

charges. We can write this as follows: 

where F is the force exerted by qy upon q2, k is a proportionality 

factor, r is the magnitude of the distance from qy to q2, and er is 

a unit vector in the direction from qy to q2.x In the CGS system 

of measurement, the value of the constant k is unity, by definition. 

In the MKS system it has the value 9 X 109 newton m2/cou- 

lomb2 very nearly. The magnitude of the force is inferred from the 

behavior of q2—or, to be more precise, from the behavior of the 

object on which the charge q2 resides. We shall refer to qx as the 

source charge and q2 as the test charge, although, of course, their 

roles could equally well be reversed. 

Since er is equal to t/r, where r is the vector distance from 

qy to q2, Coulomb’s law can also be written 

F = kqyq2^ (8-la) 

but it must be appreciated that this is still an inverse-square 

dependence even though r3 appears in the denominator. 

If a test charge is held stationary between charged plates 

(for example, in a Millikan apparatus) it experiences a force that 

can be calculated from Coulomb’s law. If the test particle is in 

motion when it is between the charged plates, as in a cathode-ray 

tube, experimental measurements of the particle’s deflection show 

that the force on the moving charge is still correctly given by 

Eq. (8-1). This remains true even as the speed of the test charge 

approaches that of light. The investigation shown in the film 

'The use of the symbol e for a unit vector comes from the German word 

“einheit.” 
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“The Ultimate Speed” reveals that the energy acquired by a 

very fast-moving electron when it is acted upon by an electrical 

force can be calculated by taking the force as correctly given by 

Eq. (8-1). Generalizing these observations, we can assert that 

Coulomb's law correctly gives the force on the test charge, for any 

velocity of the test charge (however high), provided the source 

charge is at rest (see Fig. 8-1). Since F is proportional to the 

magnitude of the test charge, and independent of its velocity, 

we can use our knowledge of the force Felec for a given value of 

q-2 to define what we call the electric field 8 at the position of the 

test charge 

Felec = <728 (8-2) 

and so, for the case of a stationary source charge, q\, we have 

8 = —(8-2a) 

Given the value of 8, we can then calculate the Coulomb force 

on any charged particle at a given position. 

THE MAGNETIC FORCE ON A MOVING CHARGE 

Despite what we have just said about the Coulomb force on a 

charged particle being independent of the particle’s motion, the 

fact remains that a charged particle at a given point may ex¬ 

perience a force that depends on its velocity. Such a force arises 

if there is at the position of the charge what we call a magnetic 

field. The field has a well-defined direction, as indicated for 

example by a compass needle, and the magnetic force on the 
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moving charge is found to be given by the following equation 
(already cited in Chapter 7): 

Fmag = const. (f?2U X B) 

where u is the velocity of the charged particle (of charge q2) and 

B characterizes the strength and direction of the magnetic field. 

In the MKS system of measurement, the value of the constant is 

unity, because of the way in which the units of charge and mag¬ 

netic field are defined. In the CGS system, the constant turns out 

to be equal to the numerical magnitude of 1/c. Why is this? 

A heavy emphasis on units and systems of measurement would be 

inappropriate in this chapter. The main interest lies elsewhere. 

On the other hand, the insight that relativity theory brings to 

electromagnetism removes much of the seeming arbitrariness of 

the subject. It exposes the essential relation between the Coulomb 

law and the magnetic force law, and between the constants that 

appear in them. And even at the outset it may be helpful to make 

some further remarks about these two basic force laws. 

When electrostatics was first developed, the Coulomb law, 

Eq. (8-1), was used as a basis for defining the unit of electric 

charge. Since the CGS system for mechanical measurements was 

in general use at the time, the unit charge was defined as being 

of such a magnitude that, if placed 1 cm from a similar charge in 

vacuum, each charge would exert on the other a force of 1 dyne 

(= 10~5 newton). The force between two arbitrary charges in 

vacuum could then be simply set equal to q\q2/r2. Thus, using 

the CGS system, the unit of charge (1 esu) was defined in terms 

of the force between stationary charges. 

Much later it was recognized that, since currents are made 

up of moving charges, an alternative scheme for defining a unit 

of charge could be obtained from the analysis of the magnetic 

force exerted by one current on another. This was used to define 

the practical unit of charge (1 coulomb) that is the foundation of 

electrical measurements in the MKS system.1 In this scheme, with 

an appropriately defined unit of magnetic field, the basic law of 

force on a moving charge can then be written 

Fmag = <?2U X B (MKS system) (8-3) 

'The essential difference, of course, lies not in whether we use centimeters 

and grams rather than meters and kilograms, but in whether we base our 

definition of the unit charge on Coulomb’s law or on the force between 

currents. 
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Given the value of B at a point, we can then calculate the mag¬ 

netic force on any charged particle, with any velocity, at that 

point. 
The total electromagnetic force on a charge at a given point 

can then be written as the sum of the electric force that it would 

experience if stationary, plus the magnetic force as given by 

Eq. (8-3). Thus, in general, we have 

F = + u X B) (MKS system) (8-4) 

a relation known as the Lorentz force law. We can regard Eq. 

(8-4) as a means of defining the electric field £ and the magnetic 

field B in terms of the forces found to be exerted on charges in 

various states of motion (including rest) at a given point. 

The Coulomb force law is a complete statement of the force 

exerted on a charged particle, moving or stationary, by stationary 

charges. The magnetic force is associated with moving source 

charges. We see this explicitly in the interaction of current¬ 

bearing wires. A wire is electrically neutral (to an excellent 

approximation at least) whether or not it is carrying a current. 

It exerts no Coulomb force on a charged particle in its vicinity. 

But when it carries current, a magnetic field pattern is set up 

around it, and a force, as described by Eq. (8-3), is exerted on a 

moving charged particle nearby. The current is the systematic 

drift of electrons inside the wire, and we can ascribe the existence 

of the magnetic field to this motion. The force exerted by one 

current-bearing wire on another (both electrically neutral) can 

be understood, microscopically, in terms of the magnetic forces 

exerted on moving test charges in one wire by moving source 

charges in the other. Later in the chapter we shall develop this 

very result. As with the Coulomb force law, the designation of 

one charge as source charge and the other charge as test charge 

is of course arbitrary. 

INTRODUCING THE RELATIVISTIC APPROACH 

From the standpoint of any theory that regards all inertial frames 

as being physically equivalent, the distinction between effects 

due to stationary charges and effects due to moving charges 

cannot be accepted as fundamental. It is a distinction that de¬ 

pends on the use of a particular frame of reference. A test charge 

that is moving with respect to one frame, and therefore subject 

234 Relativity and electricity 



to a magnetic force, is stationary with respect to some other 

frame and therefore experiences no magnetic force even if a 

magnetic field exists at its location. Likewise, a source charge 

that moves with respect to one frame, and hence acts as the source 

of a magnetic field, is stationary with respect to another frame 

and therefore, as far as the latter frame is concerned, gives rise 

to an electric field only. It is always possible to choose a frame 

of reference in which any given particle is stationary. In the 

discussions that follow we shall repeatedly exploit this possibility, 

which allows us (in our imagination, at any rate) to convert any 

given problem into another one for which either the source 

charge or the test charge is stationary. 

Our analysis will be carried out in terms of the forces that 

are exerted between charges in different states of motion. Our 

starting point (achieved, perhaps, by an initial shift of reference 

frames) will be the effect due to a stationary electric charge—i.e., 

an interaction described by the Coulomb force law and the 

associated electric field of the stationary charge. As observed 

from a different coordinate system, the “stationary” charge is 

moving. The transformation relations of relativity theory will 

enable us to discover how things are described in this new co¬ 

ordinate system. We shall learn that the law describing the 

electric field of a moving charge differs from that for a stationary 

charge. In addition, we shall see that a moving charge exerts a 

force upon a second moving charge that depends upon the ve¬ 

locities of both charges. This interaction will enable us to identify 

the magnetic field of the moving charge, whereas no such field 

exists for the stationary charge. It is in this sense that the correct¬ 

ness of Einstein’s hunch, quoted at the head of this chapter, is 

demonstrated: What appears as a magnetic field in one co¬ 

ordinate system is nothing else but an electric field when viewed 

in some other coordinate system. On the basis of Coulomb's law 

alone (plus relativity) we can generate a quantitative description 

of the electric and magnetic interactions between charges moving 

with arbitrary constant velocities (and can also deal with many 

problems, although not all, involving accelerated charges). 

Note especially, as you follow through the discussion, that 

it is the forces that are taken as primary. The identification of 

the electric and magnetic fields is then a secondary stage, based 

upon analysis of the total force into parts that are independent 

of the velocity of the test charge (£), and dependent on the 

velocity of the test charge (B). 
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THE TRANSFORMATION OF COULOMB’S LAW 

When we say that the force exerted by a stationary source charge 

upon a test charge is F = k(qxq2/r1 2)eT, we need to be aware of 
the precise content of this statement. It describes the state of 

affairs at some given instant of time as measured in a certain 

reference frame—that frame in which qx is stationary. The 

vector r is the spatial separation of qx and q2 at this instant, and 

the force F acts along the direction of r. Under the action of this 

force alone, the momentum p2 of the test particle would change 

at a rate given by dp2/dt = F; that is, dp2/dt is a measure of 

the force F. However, all the kinematic and dynamic quantities 

involved—the zero velocity of the source charge, the distance 

between the source charge and the test charge, and the time rate 

of change of the momentum of the test charge—are measured in 

a particular coordinate system. Referred to a second coordinate 

system which is moving relative to the first, the source charge will 

no longer be at rest, the distance (defined as being measured at a 

given instant in the new frame) between source and test charge 

may be different, and the rate of momentum change, the measure 

of the force on the test charge, may be different. If we can deter¬ 

mine the new values of these various quantities as measured in 

the new coordinate system, then we will have a law which gives 

the force on a test charge in the presence of a moving source 

charge. The basis for all our calculations will be the Lorentz 

transformations, together with the force transformations de¬ 

veloped in the last chapter. The procedure may seem awkward at 

first but is really not difficult. 

We shall begin with some situations in which the test charge 

is stationary with respect to a reference frame 5. Thus, as de¬ 

scribed in this frame, the only force that can act on it is due to an 

electric field. But let us imagine that the source charge moves 

with respect to S. Our procedure will be as follows: 

1. Transform to a frame S' in which the source charge is 

stationary. Then the Coulomb law, Eq. (8-1), gives the force on 

the test charge as measured in S'. (The test charge is moving, as 

observed in S', but, as we have been careful to point out, the use 

of the Coulomb law requires only that the source charge should 
be stationary.) 

2. Transform back from S' to S, so as to obtam a statement 

of the force, as measured in S, in terms of S coordinates only. 
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TABLE 8-1 

x' = 7(x — at) 

y' = y 
z' = z 

t' = y(t - ox/c2) 

uj 

V 

ux — o 

1 — vux/c2 

1 — oux/c2 

X 

y 
z 

t 

W* 

UV 

y(x' + vt’) 

y(t' + vx'/c2) 

uj + V 

1 + vux /c2 

VA 
1 + vux/c2 

(8-5) 

(8-6) 

F,' 

u,/y 

1 — vux/c2 

Fx - (t>/c2)(F . u) 

1 — DUx/c2 

u//y 
1 + 

fV + (p/c2)(T • up 

1 + vux /c2 

p > -__ 
v 1 — vux/c2 

= Fy'/y 

1 + vux /c2 
(8-7) 

F>- w 
‘ 1 — vux/c2 

Fj/y 

1 + oux/c2 

Our manipulations will make use of the transformation equations 

for position, time, velocity, and force. For convenience and re¬ 

peated reference, therefore, we collect them in Table 8-1. 

THE FORCE ON A STATIONARY TEST CHARGE 

Case 1. Let the source charge qx be moving with the con¬ 

stant velocity (v, 0, 0) relative to 5 and, at the time t = 0, be 

located instantaneously at the origin of S. Let the test charge q2 

be stationary on the x axis at the point (x, 0, 0). This situation is 

shown in Fig. 8-2(a). 

We cannot directly apply Coulomb’s law to get the force on 

q2, because qx is moving and the validity of Coulomb’s law can¬ 

not be assumed when the source charge is in motion. In fact 

we shall see that Coulomb’s law, applied directly, does not give 

the correct value for the force on the test charge. 

However, let us look at the situation as it appears in S'. 

System S' is moving with velocity v = (v, 0, 0) relative to S. 

Therefore in S' the source charge q j is at rest at the origin, and 

the test charge q2 is moving along the x' axis with velocity u' = 

(—v, 0, 0). At time t\ the test charge will have space coordinates 
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Fig. 8-2 Situation with moving source charge and 

stationary test charge (a) is transformed to another 

frame (b) in which the source charge is stationary and 

hence Coulomb's law can be applied. 

(x\ 0,0). We choose x’ and t' so that (x, 0,0,0) and (x', 0,0, /') 

describe the same space-time point relative to S and S', re¬ 

spectively. This situation is shown in Fig. 8-2(b). 

Before going any further, let us draw attention to a very 

important feature, which could easily be overlooked. The aim 

of our calculation is to find the force exerted by qy on q2 at a 

particular instant, / = 0, measured in S. If we describe a point 

event in terms of its coordinates (x, y, z, t), then the space-time 

coordinates of qx and q2 are (0,0, 0, 0) and (x, 0, 0, 0) respec¬ 

tively. We transform to S’, using the Lorentz transformations: 

x' .7(x — vt) y = y z' = z t’ = y(t — vx/c2) 

This gives the following results: 

Space-time coordinates of qy. (0,0,0,0) 

Space-time coordinates of q2: (x', 0,0, /') 

where x' = 7x, t’ = —7(vx/c2). The above coordinates do not 

define point events occurring at the same time in S'. But to use 

the Coulomb force law in S', we must be able to specify the 

relative positions of qx and q2 at the same time in that frame. 

We can do this because, in S', q y is stationary and hence its 

position at t' = —lvx/c2 is the same as its position at t' — 0. 

But an important matter of principle is involved here. Given two 

point events (rx, t) and (r2, l) occurring at the same time t in S, 

we can describe them as occurring at (ry, tf) and (r2', t2) in S', 

and in general tx ^ t2. In general, therefore, the value of 

r2' — Xy does not represent a distance between two particles 
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according to the criterion (simultaneity) for making such mea¬ 

surements in S'. Thus it is not, in general, the appropriate 

quantity to use in Coulomb’s law—although it happens to be in 

the case we are discussing. 

Let us return now to our problem, having justified the use 

of the distance x' — yx to describe the separation of qx and q2 

in S'. The force exerted on q2 by qi is then described (in S') by 

the following components, according to Coulomb’s law: 

Fx' = kqm/x'2 Fy =0 Fz' = 0 

We proceed to transform back to S, using the equations in 

Table 8-1. For q2 we have ux' = —v. Substituting this, and the 

components of F' as given above, we find 

Fz = Fx' = kqxqi/x'2 Fu = 0 Fz = 0 

In this case, therefore, the force on q2 as measured in S at 

time t = 0 has the same value as in S' at time t'. However, the 

distance between and q2, as measured in S at t = 0, is less than 

it is as measured in S' at time t'. This means that the law of force 

is modified if the source charge is moving. To see this modifica¬ 

tion, we must express Fx in terms of the separation of the charges 

as measured in S. Since x' — yx, 

F J_ kgiqj 
X 72 *2 

Thus the source charge, moving with velocity v, acts on the 

test charge, at rest in the line of motion of the source charge, 

with a force 1/72 times the usual Coulomb force. This result 

holds good whether the source charge is moving toward or reced¬ 

ing from the test charge. 

Case 2. Consider now a second situation, in which the test 

charge q2 is stationary on the y axis at the point (0, y, 0). Again, 

let the source charge qi be moving with the constant velocity 

(v, 0, 0) relative to S and, at the time t = 0, be located at the 

origin [Fig. 8-3(a)]. 

In S' the space-time coordinates of q2, corresponding to the 

space-time point (0, y, 0, 0) in S, are (0, y', 0, 0), and the situa¬ 

tion at /' = 0 is as shown in Fig. 8-3(b), with the velocity of q2 

given by ux' = —v. 

In S', qi is at rest, and therefore we can apply Coulomb’s law 

to obtain the force on q2 as observed in S', at the time t’ = 0, 
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when q2 is located at (0, y', 0). This force is 

Fx' = 0 Fy = kqm/ff2 F' = 0 

Equations (8-7) now give us, for the force as measured in S, 

Fx = 0 F. = 0 

F =_tkJJ._=_.JJL_= yf ’ 
v 1 + vux'/c2 7(1 - u2/c2) v 

In this case, therefore, the force on q2 is different as mea¬ 

sured in the two systems. But, since y = /, the distance between 

the two charges, as measured in S and S' at t — 0 and t' — 0, 

is the same. By contrast, in case 1 the force as measured in the 

two systems remained the same, but the distance between the 

charges was different in the two systems. Either way, the force 

law is altered—in case 1 by a factor of 1/72, and in the present 

case, as we now see, by a factor of 7. 

Expressing Fv in terms of the separation of the charges as 

measured in S, we have 

Thus, at the instant when the line from the moving source charge 

to the stationary test charge is perpendicular to the direction of 

motion of the source charge, the force on the test charge is greater, 

by the factor 7, than the usual Coulomb force. 

Case 3. In cases 1 and 2, the test charge had a special posi¬ 

tion relative to the source charge. Now let q2 be stationary and 

located at any general point (x, y, z). Let qx be moving as before. 

Then in S, at t = 0, we have the situation shown in Fig. 8-4(a). 
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The space-time coordinates of q2 are (x, y, z, 0). In S', the 

same space-time point will have the coordinates (x', y’, z', t') 

given by the coordinate transformations of Eqs. (8-5). In S' 

at time t', the picture will be as shown in Fig. 8-4(b). 

In S', ql is stationary, and using Coulomb’s law we have 

y yf 
FJ = kq\q2 FJ = kq\q2 Ff = kq\q2 yz 

From equations (8-7), 

Fx = Fx' Fy = yFy' Fz = y Fz' 

Thus 

xr y zf 
Fx = kqiq2 Fv = ykqiq2 Fz = ykqiq2 -,;j 

But 

x' = yx y' = y z' = z 

Therefore, in S, 

Fx = ykqmx/r'3 Fv = ykqiq2y/r'3 Fz = ykqiq2z/r's 

where 

r' = (V2 + y'2 + /2)1/2 = CV2jc2 + y2 + z2)1/2 

These results can be combined into a single vector equation: 

F = ykqmr/r'3 - kqiq2 ^ + ^ + g2)8/> (8-8) 

Thus the force on the stationary test charge q2, at a given instant, 

due to the moving source charge qi, is directed along the line to 

Fig. 8-4 (a) Moving source charge and stationary test 

charge in arbitrary relative positions, (b) The same 

situation transformed to a frame in which the source 

charge is stationary. 
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q 2 drawn from the position of q\ at that same instant. As com¬ 

pared with the usual Coulomb force which would act on q2 if q\ 

were also stationary, the force in the present case is decreased 

by a factor of 1/T2 if the test charge is in line ahead or behind 

the moving source charge, is increased by a factor of 7 if q2 is to 

the side of qu and varies continuously from the one value to the 

other for intermediate positions of q2. It is interesting to note 

that the distortion of the field, as compared to that of a stationary 

charge, is symmetrical forward and backward—i.e., with respect 

to a plane passing through the charge at 90° to its direction of 

motion. One might intuitively have expected the field to be 

intensified forward and weakened backward, but this is not so.1 

Since Eq. (8-8) describes the force exerted on a stationary 

test charge, the value of F/^2 is just the electric field £ due to qx. 

Thus we have 

£(*, y, z) = ykq.r/r'3 = kqi ^ — * - g2)3/2 (8-9) 

Now the electric field due to a stationary source charge is 

radial and, of course, spherically symmetrical; that is, it is the 

same in all directions. It is simply the Coulomb field £ = kq^/r3. 

If the source charge is moving uniformly, the electric field is no 

longer spherically symmetrical. Its strength is different in dif¬ 

ferent directions. But, at each instant, the direction of the electric 

field is still radial with respect to the position of the source charge 

at that same instant. 

If you think about this last result a bit—that at each instant 

the electric field due to a uniformly moving source charge is 

directed radially away from the position of the source charge at 

that same instant—you may begin to realize that this is a very 

surprising result. 

Consider what is being said. A charge q x is moving with 

constant speed along the x axis (Fig. 8-5). Suppose that, at the 

'See, however. Problem 8-3. 

£ 

X' 9i_ X 

*V 

Fig. 8-5 Electric field at P, 

ascribable to a uniformly 

mooing charge q\ at the time 

when it was at the position 

X', is directed radially from 

the present position, X, of 

the charge. 
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present instant, qi is located at point X. The electric field £ at a 

point P at the present instant will be directed radially away from 

X as shown. That means if a test charge q2 were placed at P, 

it would feel a force £q2 acting on it in the direction away from X. 

That all seems very reasonable. 

But if we believe that no effect—no mass, no energy, no 

force—can be transmitted with a speed greater than c, then the 

test charge q2, located at P, cannot “know” the present position 

of q-y. Some time must elapse before any signal, any effect, 

originating from the location and behavior of qx at its present 

position X will arrive at P—and by then q j will no longer be at X. 

Let X' be an earlier position of qi—a position such that a 

signal, leaving qx at the instant it was located at X', and then 

traveling with the speed c, arrives at P at the present instant. 

And at the present instant qu continuing its motion with speed v, 

arrives at X. Both trips take the same time. This means that 

X'P X'X X'X v 

X' is called the retarded position of qx with respect to point P. 

Any signal which left qi at some point in its journey between 

X' and X will not have reached P by the present instant. (Prove 

that.) The field, now, at P must have originated from the be¬ 

havior of q j at position X' or perhaps if the signal velocity were 

less than c, from its behavior at an earlier position. But nothing 

the charge qx may have done after the moment it was at X' can 

have any effect at P at the present instant. 

Nevertheless, the field at P points away from the present 

position of q-y. Nature behaves in such a way that, for a uniformly 

moving source charge, even though the field produced at some 

point P originated from the location and behavior of the source 

charge at an earlier time, nevertheless the field points away from 

the position of the source charge at the present time. It is as 

though nature calculates where the source charge should be at the 

present time and acts accordingly. (Indeed, it may already have 

occurred to you that, unless the charge does continue to move 

with constant velocity after passing X', it may not in fact be at 

X at the instant when the field at P is observed. Nevertheless, 

X will still be the point from which the field appears to originate 

at this instant.) Thus a result which at first glance may seem 

rather obvious is seen, upon closer examination, to be quite 

surprising—but nevertheless true. 
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THE FORCE ON A MOVING TEST CHARGE 

Coulomb’s law tells us the force on a test charge, stationary or 

moving, due to a stationary source charge. In the preceding 

calculations, our procedure has been, in effect, to set up just such 

a situation in a system S'—a stationary source charge and a 

moving test charge. The effect on the test charge was given by 

Coulomb’s law. We then transformed to a different inertial 

system 5. But in each case, we restricted our choice of S so that 

the test charge was at rest in S. In this manner we were able to 

find the force on a stationary test charge due to a uniformly 

moving source charge. 

Now we shall investigate the effect of a uniformly moving 

source charge upon a moving test charge. Again our starting 

point, as far as the calculation of forces is concerned, will be a 

system S' in which the source charge is at rest, so that Coulomb’s 

law gives a complete and accurate specification of the force. But 

then we shall transform back to a system S in which both the 

source charge and the test charge are in motion. We shall find 

a new feature: The force on the test charge includes a term de¬ 

pendent on the velocity of the test charge. This is exactly the 

situation when a charge moves in a magnetic field, and we shall 

use it to identify and evaluate the magnetic field. 

We shall start with some simple cases so that we may un¬ 

veil the properties of this new feature without becoming involved 

in any extended algebraic manipulations. 

Case 1. Let the source charge qx and test charge q2 both 

be moving with the same constant velocity (v, 0,0) relative to S. 

At the time / = 0 let the line connecting the instantaneous 

positions of qx and q2 coincide with the y axis. This situation is 

shown in Fig. 8-6(a). In S' the situation is extremely simple, 

because both charges are stationary and their separation is 

Fig. 8-6 (a) Two 

charges move side by 

side with equal 

velocities, {b) The 

situation is trans¬ 

formed to the frame 

in which both 

charges are at rest. 
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y' = y [Fig. 8-6(b)]. In S', we have 

Fx =0 FJ = kqiq2/y'2 F' = 0 

Since, for q2, we have u' = 0, the force transformations, equa¬ 

tions (8-7), give us 

Fx = 0 Fy = Fy’/y Fx = 0 

from which we find 

_ 1 kq\q2 

Now with q 2 stationary, we should have 

as calculated in case 2 of the previous section [or by reference to 

Eq. (8-8) for the general case of a stationary test charge]. The 

difference between these two values of Fy represents a magnetic 

force exerted on the moving test charge by the moving source 

charge: 

ykqiq2 
C2 y2 

The negative sign shows that, if q j and q2 are of like sign, the 

magnetic force is one of attraction between charges traveling side 

by side in the same direction. Although one should not read too 

much into such a special case as we have chosen, it is suggestive 

that this result can be written 

where Feieo (= ykqxq2/y2) is the force that would be exerted on 

q2 if it were stationary. Is the size of the magnetic force always 

proportional to the size of the electric force, and what is the 

origin of the factor u2/c2? The answers to both these questions 

will emerge as we consider other cases. 

Case 2. Consider now a problem identical with case 1 ex¬ 

cept for one thing—the charge q2 has a velocity of magnitude ux, 

different from v but still parallel to it.1 The situations as ob- 

■Why not consider a case in which q2 is on the x axis? Analyze such a case 
for yourself and you will discover why it is not very instructive. 
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Fig. 8-7 (a) Two charges move side by side with 

different velocities in the same direction. (b) The 

situation is transformed to a frame in which the source 

charge is stationary. 

served in 5 and S' are then as shown in Fig. 8-7. In S', we have, 

once again, 

FJ = 0 Ff = kqiqz/y’2 Fz’ = 0 

but in transforming back to S by equations (8-7) we must make 

use of the nonzero value of u': 

(V = <W = o) 

Using these, we find 

F.-O 

This is a more revealing result than case 1. It shows us that the 

magnetic force exerted on q2, if it lies on the y axis and is traveling 

parallel to x, is given by 

The magnetic force is seen explicitly to be proportional to the 

speed of the test charge, just as the force law, Eq. (8-3), would 

require. Also the factor vux/c2, which expresses the magnetic 

force in this case as a fraction of the electric force, is proportional 

to the speed of the source charge, too. 

Case 3. We shall consider yet another problem quite similar 

to the last two. Again we shall place q2 at the point (0, y, 0) in 
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S, but this time we shall assume that its motion is along the y 

axis: u = (0, uy, 0). The situations as observed in S and S' are 

thus as shown in Fig. 8-8. Once more, we have 

F’ = 0 Fy = kqxq2/y'2 Fz' = 0 

but now there are two nonzero-velocity components of q2 as 

measured in S': 

Ux’ = —V Uy’ — Uy/y Uz = 0 

Using these, we find 

„ vuv ykqxqi r 7kqxq2 
Fx = ~^ = —yT~ O = 0 

The situation is now really beginning to open up. Looking at 

the results of this problem and the previous one, we see that the 

total force on q2 can be regarded as made up of two parts: 

1. An electric force, along the line from qx to q2, of mag¬ 

nitude ykqxq2/r2. 

2. A magnetic force, at right angles to the direction of motion 

of q2, proportional to the electric force and proportional also to 

the magnitude of the velocity of q2 (as well as to the speed v of q j). 

Of course, we are still a long way from considering a truly 

general case, with q2 at an arbitrary position with arbitrary 

velocity. But the next case will reinforce the conclusions that we 

have just proposed. 

Fig. 8-8 (a) A source charge and a test charge have 

velocities of different magnitudes at right angles to one 

another. (b) The situation is transformed to a frame in 

which the source charge is stationary. 
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Fig. 8-9 Situation like that in Fig. 8-8, but the relative 

positions of the charges are now arbitrary. 

Case 4. Let qlt as usual, be at the origin of S at t = 0, with 

velocity v along x, i.e., v = (v, 0, 0). At this same time let q2 be 

at the point (x, y, 0) and moving parallel to the y axis: u = 

(0, tty, 0). The situations as observed in 5 and S' are shown in 

Fig. 8-9. From the Coulomb force law, as applied in S', we have 

Fx’ = kqiqzx’/r'* Ff = kqlQ2y'/r'3 Fz' = 0 

The velocity u' is the same as in the previous case: 

Ux' — —V Uy' = Uy/7 uf = 0 

Use of the force transformations, equations (8-7), then leads to 

the following results, as may be confirmed without too much 

Fx (* + ?>) 
ykqiq2 

~ y fz — o 

where r' = (y2x2 + y2)112. 

Let us look carefully at this result. In it we can recognize 

first the electric force Felec, given by 

Felec 
ykqiq2r 

(72*2 + y2y3/2 

exactly according to Eq. (8-8).. The remaining part is a force in 

the x direction—at right angles to the velocity of q2, once more, 

and proportional to the magnitude of this velocity: 

ykqiq2 vuv 
'mag “ r'3 ~^2 y 
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Can we relate it simply, as before, to the electric force? Yes, we 

can. And this less special geometry reveals more of the essentially 

vectorial relationship involved. Let us follow the lead suggested 

by what we already know about the magnetic force, as expressed 

in Eq. (8-3): 

Fmag *?2U X B 

In the present case, the velocity u is parallel to y, and the magnetic 

force (as always, perpendicular to it) is parallel to x. This would 

require the vector B to be parallel to z. Moreover, its magnitude 

is given by 

_ 7kg I vy 

r'3 c* 

Now the product vy has exactly the magnitude of the vector 

product v x r, where v is the velocity of q i. Moreover, the 

vector v x r is along the z direction. Thus we can provide a 

correct description of B, in both magnitude and direction, 

through the equation 

But the quantity in parentheses is none other than the electric 

field £ due to the moving charge qlf as given by Eq. (8-9). Hence 

we can write 

B = 1 (v X £) (8-10) 

where 

£ = ykqir/r'3 (r'2 = T2*2 + y2) 

and then the total force on the moving test charge is given by 

F = 926 + gza X B 

precisely as in Eq. (8-4), with £ and B as given by Eqs. (8-9) 

and (8-10). 

It can be objected, of course, that we have not really proved 

these results. But an analysis of the case in which q2 has any 

position and any velocity will be found to accord once more with 

our equations. The combination of electric and magnetic forces 

on a moving charge, caused by another moving charge, can be 
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exactly calculated from a knowledge of the Coulomb force in a 

frame in which the source charge is at rest. 

In the remainder of this chapter we shall apply these basic 

results to the problem of extended currents—i.e., long lines of 

moving charges—so as to see how, on the basis of relativity, one 

can obtain a very illuminating picture of the mechanism by which 

one current-carrying wire exerts a force upon another. We shall 

approach this by first considering the properties of a long line of 

charges all of the same sign. 

THE FIELD OF A LINE DISTRIBUTION OF CHARGE 

We shall consider the field due to a uniform distribution of 

charge along the x axis. In reality, it is impossible to have 

exactly this kind of distribution, because we know that electric 

charge is quantized in multiples of e. However, since e is so small 

by macroscopic standards, this approximation will be justifiable 

for many purposes. We shall first consider a stationary set of 

charges, and then see what modifications arise if the whole line 

of charge is moving with some constant velocity. 

Stationary line of charge 

We shall assume a constant linear density of charge X (measured, 

for example, in coulombs per meter of distance) extending along 

the x axis from — oo to +oo (Fig. 8-10). We shall ask: What is 

the electric field at a point P located a distance b away from the 

x axis? 

By the principle of superposition, the field at P is the vector 

sum of the fields produced by every element of charge along the 

line. Clearly the resultant x component of the field at P is zero, 

from symmetry considerations. But every element of charge 

contributes a positive y component of field at P. 

The amount of charge in the line element dx is X dx. The 

dZ l 
y 

Fig. 8-10 Calcula¬ ,p 

tion of electric field b 
T 

due to an infinite line X<ix 

of stationary charge. 
wv/ — — —........*-— — — 

0 x dx 
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field it produces at P is 

dZ 
, X dx 

and the y component is 

X sin 8 dx 
dZy = k 

Let us express this in terms of the one variable 8: 

r = Z>/S*n 6 

x = b cot 6 

dx = — b esc2 6 dd 

and therefore 

dZy = — ^ sin 8 dd 
b 

The resultant y component of field is then 

o *X / • QJO 2kX 
Zy =-— sm 8 dd = —— 

b Jr b 

Since this is the only nonvanishing field component, we have, 

for the complete line of charge, 

Z = 2k\ev (8-11) 
b 

Line of moving charges 

The only field we needed to consider above was the electric field. 

There is no magnetic field because the charges are all at rest. 

But what happens to the electric field and what is the magnetic 

field if the charges are moving? 

Again, let us consider a constant linear charge density X 

extending along the x axis from — oo to + oo, but this time we 

shall let the entire charge distribution move along the x axis 

with the velocity v [Fig. 8-11(a)]. 

As we have seen, moving charges produce electric fields 

which differ from the normal Coulomb fields, and in addition 

they produce magnetic fields. The moving charge density in the 

vicinity of point 1 produces an electric field dZ\ at P which is 

larger than the normal Coulomb field by a factor of 7. The mov- 
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Fig. 8-11 (a) Elec¬ 

tric fields due to near 

and distant parts of 

an infinite line of 

moving charge. 

(fi) Electric field of 

a line element at an 

arbitrary value of x. 

(a) 
|d£j 

d£^P 

Linear charge density 

1 —77 2 

(b) f 
<?£V\jp 

r 
b 

\dx_v 

0 x dx 

ing charge density far away along the x axis (as at point 2) 

produces an electric field d£z at P which is less than the normal 

Coulomb field by a factor approaching 1/Y2. [If you want to 

remind yourself of these results, refer to Eq. (8-9).] It is not 

immediately obvious which of these two opposing effects is 

dominant. Again, let us integrate the differential contributions 

to obtain the resultant field. 

The contribution to the electric field at P due to the quantity 

of charge X dx moving with velocity v at some arbitrary point 

along the line [Fig. 8-11(b)] is given by Eq. (8-9) and is as 

follows: 

d£ = k(-Xdx\y2x2 + b2yi2 

As with the line of stationary charges, when we add all the 

contributions to the x component of field from x = — oo to 

x — +oo, then Ex will vanish. It is worth noting that this is so 

in spite of the fact that the velocity points in a particular di¬ 

rection along x. This is an expression of the forward-backward 

symmetry of the electric field of a moving charge. As for Zy, 

we have 

kYkbdx 
(72*2 + £2)3/2 

which gives 

Ey = 2k\ (8-12) 
b 
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The electric field of this moving array of charge is exactly the 

same as that of the stationary array! The two opposing effects— 

the factor of 7 from the nearby charges and the factor of 1/72 

from the distant charges—compensate each other exactly. 

Now how about the magnetic field? The stationary array, 

of course, produces no magnetic field. Remember what this 

means—simply that the stationary charges exert exactly the same 

force on moving charges as on stationary ones. But the moving 

linear array does produce a magnetic field. We have seen [Eq. 

(8-10)] that the magnetic field of a uniformly moving charge is 

B = 4v X £ 
CZ 

where £ is the electric field produced by the charge and v is the 

constant velocity of the charge. Thus, if the element of charge 

X dx produces the small electric field d£, then its contribution 

to the magnetic field is 

dB = ~yX d£ 
cz 

The magnetic field of the entire linear array is then 

B = J dB = J ~y X dS 

But v is a constant velocity along the x axis and is the same for 

all the elements of charge along the line. Thus we can put 

B = ^x JdS 

and therefore 

B = i(vX£) 

where £ is the field produced by the entire linear array, as given 

by Eq. (8-12). Since £ is everywhere radially outward from the 

x axis and B is perpendicular both to £ and to ?, the magnetic 

field lines consist of concentric circles around the x axis—cor¬ 

responding, of course, to one of the familiar facts of experimental 

electromagnetism. 

In the next section we shall consider the magnetic force 

exerted by such a moving charge array on a single moving charge 

traveling parallel to the line of charge at a velocity u. We can 
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anticipate the actual result by taking the above equation for B 

together with the general magnetic force law, Eq. (8-3). This 

gives us 

if u and v are in the same direction. Thus if q2 has the same sign 

as the line of charges, the magnetic force is attractive in this case. 

THE MAGNETIC FIELD AND RELATIVITY 

The preceding calculation for B and the associated magnetic 

force could hardly be simpler. Nevertheless we shall approach 

the problem in yet another way to emphasize the relativistic 

nature of the magnetic field. 

To investigate the magnetic field at P due to the moving 

linear distribution of charge, we must place a moving test charge 

at P. To simplify matters, we shall let the test charge q2 move 

parallel to the x axis with the velocity u [Fig. 8-12(a)], 

In this reference frame S, the force on q2 contains both an 

electric part and a magnetic part: 

F = F£ + Ffl (8-14) 

The electric force is, by Eq. (8-11), given by 

F£ = Zq-i = 2k ^ q2e« (8-15) 

Fig. 8-12 (a) A test 

charge moves parallel 

to a line of moving 

charge, lb) The 

situation is trans¬ 

formed to a frame in 

which the tine charge 

is stationary. 

(c) The linear charge 

density qi/& is not an 

invariant. 

(a) In 5 J—hLL 

Linear charge density X 
b 

V 
X 00 

(b) In S' <12 »_ii. 

Linear charge density X 
b 

(c) In S 

V V v 
h-6—H 

Q\ 9i <7i 
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The magnetic force is 

Ffl = qo\i X B (8-16) 

and if we can find Fb, then we shall know something about B. 

Let us look at the system from a reference frame S’ moving 

with velocity v relative to S. In S', the linear array is stationary 

and q2 is moving with a velocity u' [Fig. 8-12(b)]. The distance 

from q2 to the line is transverse to the direction of relative motion 

between S' and S and therefore is unchanged. But what happens 

to the linear charge density along the line? We can approximate 

the linear array by spacing an infinite collection of moving dis¬ 

crete charges qi a distance 8 apart in frame S, and choosing qi 

and 8 such that q 1/8 = X [Fig. 8-12(c)]. 

If now we let q 1 and 8 both approach zero in such a way 

that the ratio qx/8 always remains constant and equal to X, then 

we approach our idealized array—a line distribution of charge 

with constant linear density X, moving with velocity v. 

In S' the charges q x are at rest. The distances between them 

are therefore greater, by the factor 7, than they are in S. Hence 

the charge density in S' is X' = <71/76 = X/7 and is less than 

it is in S. 

Now in S' the source charges are stationary. Thus the 

entire force on q2 is purely electric and is given [cf. Eq. (8-11)] by 

F’ = Vc\q2 = X-(2k^q2 

The force F’ is in the y direction. Equations (8-7) tell us how 

to transform F' to find the total force F on q2 as observed in S: 

f' = ___ 
a 7(1 - Uxv/c2) 

Applied to the present case, this gives 

That is, 

_ X /, uv\ 
f = 2*-?2^i (8-17) 

Thus from Eqs. (8-14), (8-15) and (8-17), the magnetic force 

observed in 5 is 

Fj? = F — Fe 
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Therefore, 

_ uv ( X\ uv 

F* = ” &ykb)q*w = _92^s 

in complete agreement with Eq. (8-13). Using Eq. (8-16), we 

can then infer that the y component of B is zero, and that its 

z component is given by 

in agreement with Eq. (8-10). To verify that this is the whole of 

B—that the x component of B is zero—we should have to let our 

test charge q2 move in some other direction, say the y direction. 

But we shall leave that as an exercise for the reader. Once again 

we see that a force which is of purely electric origin in one frame 

(S') has both electric and magnetic constituents from the stand¬ 

point of another frame (S). 

THE MAGNETIC FORCE ON A MOVING CHARGE 
DUE TO A CURRENT-BEARING WIRE 

For ordinary velocities, the magnetic force between two electric 

charges is very, very small compared to the electric force—smaller 

by the factor uv/c2, for example, for charges moving side by side 

at speeds u and v. It can be easily observed only if we can manage 

to get rid of the electric force. Fortunately we can do that, for 

nature provides both positive and negative charges. 

Consider, for example, a long, electrically neutral copper 

wire in which a current is flowing. The positive copper ions re¬ 

main stationary and the free negative electrons move, say with a 

velocity v.1 What is the force on a moving test charge outside 

the wire? For simplicity let us first consider a test charge q2 

(e.g., an electron) moving at the same velocity v as we have as¬ 

sumed for the electrons in the wire [Fig. 8-13(a)], The densities 

of positive and negative charges in the wire are equal and opposite, 

say ±X0. They produce electric fields, at q2, which are equal in 

magnitude (8 = 2k\0/b) but opposite in direction. Therefore 

the electric force on q2 is zero. If q2 were stationary, that would 

‘This is, of course, a gross oversimplification. The conduction electrons in 
a wire have all sorts of speeds and directions, but v represents a steady mean 
drift velocity associated with the net current flow. 
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Fig. 8-13 (a) A test 

charge moces parallel 

to a current-bearing 

wire. (b) The 

situation is trans¬ 

formed to a frame in 

which the test charge 

is stationary. 

be the end of it. But q2 is moving and therefore can “feel” the 

magnetic field. 

To find out something about the magnetic force on q2 as 

observed in S, let us shift to a different frame. S', moving with 

velocity v with respect to S. In S', q2 is stationary, the electrons 

in the wire are stationary, and the positive ions are moving with 

velocity — v [Fig. 8-13(b)]. 

As before, the distance between the stationary electrons in 

the wire is (from the standpoint of S') increased and therefore 

their linear density X_ is decreased by the factor 1/7 :X_ = — X0/7. 

On the other hand, the relativistic contraction of the distance be¬ 

tween the moving positive ions results in an increase in their 

linear density X+ by the factor 7: X+ = 7X0. The positive and 

negative charge densities as observed in this frame are no longer 

equal and opposite! And the difference is in the direction that 

results in a net force on q2 that is an attractive force if it is an 

electron traveling in the same direction as the electrons in the 

wire. 

Let us now spell this out in detail. In S' the test-charge q2 

is stationary and the force on it, F', depends only on the electric 

field of the linear arrays of positive and negative charge. The 

net charge density X' as measured in S' is given by 

X'_X+ + X--X„(T-i) 

Thus for the net force F' we have 

r/ X' 2k\0 l\ 
Fv =2kJq2 = —l7--)q2 

(a) In 5 

V 

Qz - 

b 

V 

Electrons moving 

+ + + + + + 

Positive ions stationary 

(b) In S’ <lz - 

b Electrons stationary 
— - - — — — 

~-v + + + + + + + 

Positive ions moving 
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Transforming back to S, in the now familiar way, we find that the 

force on q2, observed in S, is given by 

Therefore, 

v2 (2k\o\ o 
Fv =^\T)q2 = ** &t}2' 

where S, remember, is the magnitude of the field, in S, of either 

the positive or the negative charges in the wire. Since there is 

no net electric force on q2 in S, the force F ( = /32&q2)is entirely 

the magnetic force. It is down by a factor (i2 from the electric 

force which either the positive ions or the moving electrons alone 

would have exerted, but is observable even for small values of /3 

because the electric force has been exactly canceled out by the 

presence of both positive and negative charges. 

We see, in this example, that the magnetic field observed in 

S is related to the electric field observed in S'. And the electric 

field in S' arises from the relativistic changes in the distances 

between the moving charges—the Lorentz contraction effect. 

This becomes a really astounding result when we consider it 

quantitatively. How fast are the electrons moving along a typical 

current-carrying wire? Consider a copper wire with a cross- 

sectional area of about 1 mm2 (= 10“ 2 cm2) carrying a current 

of 10 amp. A current of 10 amp means that 10 coulombs/sec, or 

10 coulombs/sec 

1.6 X 10-19 coulomb/electron 
6 X 101Belectrons/sec 

must pass through any cross-sectional area of the wire. In solid 

copper there is about one free electron for every Cu atom, or 

about 1023 free electrons/cm3. (Check this.) If the electrons 

are moving along the wire with a speed v then, in a time interval 

At, all the free electrons in the cylinder of base area 10~2 cm2 and 

of length v At (Fig. 8-14) will pass by position B. This number is 

1023 X 10“2v At. But the number of electrons that must pass B 

when a current of 10 amp flows for a time At is 

6 X 10 
19 electrons 

sec 
X At 
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Fig. 8-14 Schematic dia¬ 

gram of a section of a 

current-bearing wire. 

Equating these two expressions yields 

_2 
v = 6 X 10 cm/sec = 0.6 mm/sec 

The electrons are barely moving! And in terms of the above 

theory, it means that we have related the magnetic force exerted 

by the electron current to the Lorentz contraction (of the distance 

between uniformly moving charges) under conditions such that 

the ratio v/c is only about 2 X 10~12 and hence the Lorentz 

contraction is almost inconceivably small—only of the order of 

1 part in 102i. We are accustomed to thinking of magnetic 

forces as being quite large and important, yet we can ascribe 

them to the effect of these seemingly negligible relativistic con¬ 

traction effects at low speeds.1 Who says relativity is important 

only for velocities comparable to that of light? 

Another implication of the above analysis is that any de¬ 

parture from electrical neutrality of a current-bearing wire, as 

observed in its own rest frame, must be very small indeed, or 

else the electric force on a moving charge outside the wire would 

completely swamp the magnetic force. 

MORE ABOUT MAGNETIC FORCES AND LORENTZ CONTRACTIONS 

For the situation considered in the last section, in which the test 

charge was assumed to have the same velocity as the electrons 

in the wire, a space-time diagram helps to provide a very direct 

appreciation of the way in which the test charge “sees” the wire 

as carrying a net positive charge. Figure 8-15 shows the world 

lines of the positive ions and the electrons. The positive ions 

are at rest in S and the electrons are moving. Their densities 

are the same and therefore the distances between the ions and 

between the electrons, measured at any time t, are equal. 

'It is important to note that no contractions are involved from the stand¬ 

point of the laboratory frame, but only from the standpoint of a frame 

moving relative to the laboratory. The only difference between a wire carry¬ 

ing a current and a wire not carrying a current is the existence of a drift 

velocity for the electrons. The mean distance between the electrons remains 

unaffected as measured in the laboratory frame. 
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Fig. 8-15 Minkowski 

diagram to illustrate 

how a neutral current¬ 

bearing wire appears 

to carry a net charge 

density as observed 

in a moving 

reference frame. 

The S' frame is moving relative to S with the same velocity 

as the electrons. On our space-time diagram, the ct' axis is 

therefore parallel to the world lines of the electrons and the 

angle between the x' and x axes is then the same as that between 

the ct' and ct axes. In S', the location of the positive ions and the 

electrons at t' = 0 is given by the intersection of their world 

lines with the jc' axis. It is clear that in S' the distances between 

the positive ions are less than the distances between the electrons, 

and these respective distances remain the same at any time t'. 

Thus we again see that in S' the density of the positive ions in 

the wire is greater than the density of electrons, and therefore a 

stationary electron outside the wire will experience an electric 

force. As before, it is this force which, in S, is perceived as a 

magnetic force. With the use of the appropriate scale for dis¬ 

tances measured along the x' axis (refer to the discussion of 

Minkowski diagrams in Chapter 3), the space-time diagram will 

of course yield the correct quantitative values for X+ and X_. 

The situation that we considered above was very special, 

because we assumed that the test charge and the line of electrons 

both had the same velocity v. Let us now take the case of a test 

charge moving parallel to the neutral current-bearing wire at 

some velocity u which is different from the electron drift velocity v 

[Fig. 8-16(a)]. What force acts on it? Since the wire is neutral 

and the positive ions, being stationary, produce no magnetic 

field, we already have the answer; it is equal to the purely mag¬ 

netic force due to the moving line of electrons, according to 
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Eq. (8-13): 

—9 2 

UD 

C2 

But let us briefly show how this result, too, can be understood 

in terms of the relativistic modification of the positive and 

negative charge densities. 

As before, we shift to the frame S' in which the electron test 

charge is at rest and therefore sensitive only to the electric force 

[Fig. 8—16(b)]. In this frame the positive ions in the wire have 

the velocity — u and the electrons have a velocity v' given by the 

velocity-addition law: 

tf = 
v — u 

1 — uv/c2 

In S, the magnitudes of the positive and negative charge densities 

are both X0. But in S' we have 

X+ = 7(w)X o 

X_ ytf) 

y(v) 
Xo 

(Satisfy yourself, in particular, that the equation for X_ makes 

sense. Imagine going into the rest frame of the electrons and then 

out again.) But we have the relationship 

7(v') = 7(u)7(v)(l — uv/c2) 

[refer to Eq. (7-7)]. Thus we have 

X_ = —Y(w)(l - uv/c2)Xo 

Fig. 8-16 (a) A 

test charge moves 

parallel to a current- 

bearing wire. 

(b) The situation is 

transformed to a 

frame in which the 

test charge is 

stationary and hence 

insensitive to mag¬ 

netic fields. 

(a) In 5 
<72 

V 
b Electrons moving 

+ + + + + + 
Positive ions stationary 

(b) In S’ <72 

v' 
b Electrons moving 

-u + + + + + + 
Positive ions moving 
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The net charge density along the wire, as measured in S', is thus 

given by 

= X+ + A_ = y(u) — Xo 
C‘ 

Proceeding exactly as in the previous more special case, we find 

that the net force on q2, as measured in the laboratory frame S, 

is given by 

If you are bothered by the absence of a negative sign in this 

equation, as compared to Eq. (8-13), remember that the charge 

density of the moving charges in the wire, i.e., the electrons, is 

equal to — X0, and putting X = — X0 in Eq. (8-13) leads exactly 

to the result above. 

THE FORCE BETWEEN CURRENT-BEARING WIRES 

We are now ready for the culmination (so far as we are concerned 

in this book) of the relativistic analysis of the forces between 

charges in various states of motion. We shall consider the force 

between two long parallel metallic wires a distance b apart, 

carrying currents Ix and I2 (Fig. 8-17). The densities of positive 

and negative charges are equal in each of the wires, and therefore 

each wire produces no electric field. But each wire does produce 

a magnetic field because there is an electron flow, and this mag¬ 

netic field exerts a force on the moving electrons in the other wire. 

The basis of our calculation is the statement of the force 

exerted on a test charge q2, traveling at speed u parallel to an 

infinitely long line of charge moving at speed v: 

We can describe this, if we wish, in terms of the magnetic field 

Fig. 8-17 Two 

parallel current¬ 

bearing wires. 
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at the position of q2, as given by Eq. (8-18): 

giving 

Fy = -02 uBz 

To apply these results to the present problem we must introduce 

the relation between current, linear charge density, and velocity 

of the moving charges: 

I =\v 

(Prove this.) Let the magnitudes of linear charge density and 

electron drift velocity in the two wires be Xi,i>i and X2, v2, re¬ 

spectively. Then the magnetic field due to wire 1 at the position 

of wire 2 is given by 

and is in the direction perpendicular to the plane containing the 

wires. Let us calculate the force that this field exerts on all the 

electrons in a length / of wire 2. The amount of moving charge 

(q2) is numerically equal to \2l, and its velocity (u) is in this case 

v2. Hence the magnitude of the force on this length of wire is 

given by 

*-***&) 
i.e., 

F = t Ijrl = B*hl (8-20) 

This force, as we have seen, is in the plane of the wires. If the 

currents are in the same direction, the force is attractive. If the 

currents are oppositely directed, the force is repulsive. 

The constant k, remember, is the constant of proportionality 

in Coulomb’s law. We see now that it appears in the expression 

for the force between two current-carrying wires and can there¬ 

fore be used to calculate that force when known currents are 

flowing. In the MKS system, as we mentioned at the beginning 

of the chapter, its value is about 9 X 109 newton • m2/coulomb2. 

Using Eq. (8-20), one can calculate from this that the force per 

unit length between two parallel wires, 1 cm apart, each carrying 
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a current of 10 amp, is 0.002 newton/m. If there were no posi¬ 

tive ions to neutralize the electric field of the electrons, the 

electric force between the wires would be a factor of c2/v2 greater 

than this, or about 5 X 1020 newton/m! 

UNITS AND SYSTEMS OF ELECTRIC AND MAGNETIC MEASUREMENT 

To wrap up this discussion, as it were, let us return to the quan¬ 

titative statements of the electric and magnetic force laws with 

which we began the chapter. The subject of basic units, etc., 

may often seem rather dull, but the unification of electricity and 

magnetism through relativity provides a special interest in this 

case. 

Equation (8-1) states the basic law of force between elec¬ 

tric charges (Coulomb’s law). The last equation [Eq. (8-20)] 

states a law of force between parallel currents. The CGS unit 

of charge was defined by setting the constant k equal to unity in 

the Coulomb law. But what if we let Eq. (8-20) define our unit 

of charge? We can do this by asserting that two parallel wires, 

placed a unit distance apart and each carrying a current of unit 

strength, repel or attract one another with exactly 2 units of 

force per unit length. Why 2 units of force and not 1? To 

correspond with the factor 2 on the right side of Eq. (8-20). 

Historically, this was in effect done to define an absolute unit of 

current, and the units of mechanical measurement were CGS 

units.1 Thus the definition in effect read as follows: 

If two long parallel wires, placed 1 cm apart, each carry a unit 

of current, the force exerted on each wire by the other is 2 dynes 

per cm of its length. 

The unit of current thus defined is actually 10 amp in our prac¬ 

tical units of measurement—i.e., a rate of flow of charge of 

exactly 10 coulombs/sec. Let us now restate the above definition, 

using MKS units: 

If two long parallel wires, placed 10-2 m apart, each carry 

current at the rate of 10 coulombs/sec, the force exerted on each 

wire by the other is 2 X 10-5 newton/10-2 m of its length. 

Once we have done this, we have completely determined the value 

of the constant k in what we familiarly call the MKS system. 

'We say “in effect” because, for practical reasons, the measurements were 

made on the force between current-bearing coils rather than between long 

straight wires, and a formula appropriate to this other geometry was used. 
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For, by substitution in Eq. (8-20), we have 

2 X KT-’ 

Therefore, 

2k 10 X 10 
e2 10-2 

X 10“2 

k = 10~7c2 newton • m2/coulomb2 

But 

c = 2.9979 X 108 m/sec (see Table 1-2) 

Therefore, 

k (MKS) « 8.987 X 10u newtons • m2/coulomb2 

(i.e. « 9 X 109) 

Putting this result another way, we can see how, given an ex¬ 

perimental knowledge of the electric force between stationary 

charges and the magnetic force between currents, we are in a posi¬ 

tion to evaluate the magnitude of c itself. That is just what Clerk 

Maxwell did in the 19th century, when he came to recognize that 

the laws of electricity and magnetism, as established in the lab¬ 

oratory, implied the possibility of electromagnetic waves traveling 

at the speed c through space. 

And now let us add a few final remarks about the electric 

and magnetic fields themselves. We have seen in some detail the 

confirmation of Einstein’s conviction that a magnetic force is 

none other than an electric force from a different point of view. 

Why not, then, apply this same logic to the fields as such? That 

is, define a magnetic field as being dimensionally the same as an 

electric field. It is not difficult to arrange this. Let us see how it 

can be done. 

We shall return to the basic calculations of the force exerted 

by one moving charge on another. If charge q i moves with 

velocity v, the net force that it exerts on charge q2, moving with 

velocity u, is given, according to the general force law [Eq. (8-4)] 

by 

F12 = <72(8 + u X B) (MKS system) 

where, according to Eq. (8-10), we have 

B = -^7 (v X £) (MKS system) 
c2 

Now our introduction of the fields £ and B is, in a way, just a 
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device to allow us to describe the force on an arbitrarily moving 

test charge in convenient terms. If we choose to assert that 

electric and magnetic fields are really quantities of the same 

kind, we can arrive at the same value of the physically observable 

quantity—the force F—by simply transferring a factor 1 /c from 

the definition of B to the statement of the force law. And this is 

precisely how the equations are written in what is traditionally 

called the CGS system—although, as mentioned at the beginning 

of the chapter, the essential point is not the choice of units as 

such but the use of Coulomb’s law, rather than the force be¬ 

tween currents, to define a unit of charge. Thus in the CGS 

system the two equations above are replaced by the following: 

F12 = <?2 + - X 

where 

B = - X £ 
c 

)• (CGS system) 

The magnetic field is thus defined, in effect, as some fraction 

(~ v/c) of the electric field. We see, then, how it comes about 

that in the magnetic force law, 

Fmag = const. (<?2U X B) 

the value of the constant should be unity according to a system 

(MKS) in which unit charge is defined in terms of the force be¬ 

tween currents, but equal to 1 /c according to a system (CGS) in 

which the unit charge is defined in terms of Coulomb’s law. 

It is apparent that the CGS system has much to commend 

it from the standpoint of the lack of any fundamental distinction 

between electric and magnetic forces. But whichever system one 

uses, the results that we have developed make it possible to 

formulate a set of transformation equations between components 

of £ or B in one frame and related components of both £ and B 

in another frame. They will be a set of linear equations, es¬ 

sentially similar to the original Lorentz transformations that 

mingle distance and time, or the dynamical transformations that 

mingle momentum and energy. You can easily develop them if 

you choose. But their general application would be outside the 

scope of this book. 
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PROBLEMS 

<h 
V2 

0,0) 

8-1 Consider the situation in the figure. Show, by transforming into 

the rest frame of <71 and then back into the laboratory frame, that the 

force on the test charge 172 is the same whether the source charge q\ 

is moving toward <72 or receding from it. 

-+ 
O 

P 

8-2 (a) A charge <7 moves with constant velocity v, and at time t is at 

the point x (see the figure). The point x' is the position of q at an 

earlier time t\ such that a light pulse emitted from x' at time t' arrives 

at P at time t (i.e., x' is the retarded position of q with respect to an 

observation at P at time /). Show that a signal emitted from q as it 

passes point 0 arrives at P after time t. 

(b) Suppose q moves with arbitrary velocity (over an arbitrary 

path), but with v < c. Show that there is one and only one retarded 

position with respect to an observation at point P at time t. 

v u 
?i»— <72*- 

Uz) 

8-3 If a charge is at the origin at a certain instant, moving with 

velocity v along x, the electric fields at ±x at that instant are equal. 

The text (p. 242) comments on the remarkable fact of this fore-and-aft 

symmetry. Intuitively, one might have expected the field to be weak¬ 

ened at points from which the charge is receding and strengthened at 

points which it is approaching. The basic soundness of this intuition 

becomes apparent if one takes account of the time needed to pro¬ 

pagate the field. To consider this problem, suppose that a charge of 

velocity 0 (= /3c) passes through the origin at time t — 0. The field 

at x = a at t = 0 is associated with a previous (retarded) position of 

the charge, x = —b, such that b/v = (a + b)/c. Similarly, the field 

at x = —a is associated with a different retarded position, x = —d. 

Express the electric field in terms of the distance between the field 

point and the appropriate retarded position of the charge in each case. 

Deduce that, if we had considered a situation for which the retarded 

separations had been equal, the field at the point ahead of the charge 

would exceed that at the point behind the charge by a factor equal 

to (1 + fl)2/(l - 0)2. 

8-4 Consider the situation in the figure, in which a source charge 

moving with velocity v acts on a test charge moving in the same di¬ 

rection, and along the line joining them, with speed « (see the figure). 

What is the force on the test charge <72 due to the source charge q\? 

Why is this case not very instructive for the analysis of magnetic 

forces ? 

8-5 A source charge q\ situated at the origin moves in the x direction 

with velocity v (see the figure). What is the force on a test particle <72 
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situated at an arbitrary position r, moving with an arbitrary velocity 

u? Show that B = v X £/c2 for this situation.1 

8-6 Two inertial frames S and S' move relative to one another with 

speed w. Derive the transformation equations relating the electric and 

magnetic fields in the two frames of a point charge q moving with 

constant velocity in the x direction. 

8-7 An infinitely long line charge of density X is situated on the a: axis 

of a certain coordinate system. This line charge moves in the a: direc¬ 

tion with constant velocity v. A test charge q moving with arbitrary 

velocity is located at the point (x = 0, y = b, z = 0). Find the force 

on the test charge and use it to show that the electric and magnetic 

fields at (0, b, 0) are related by the equation B = v X £/c2. 

8-8 Two parallel copper wires each carry a current of 1 amp. 

(a) Assuming there is one free electron for every Cu atom, what 

is the drift velocity of these electrons if the cross-sectional area is 

0.01 mm2? 1 mm2? 1 cm2? 

(b) What is the force per unit length experienced by each wire if 

they are separated by a distance of 1 m? 1cm? 

8-9 It is pointed out in the text that when the free electrons in a 

neutral wire are given a drift velocity, so that a current flows, the mean 

distance between the electrons as observed in the laboratory remains 

unchanged. How do you reconcile this with the fact that all objects 

are subject to a Lorentz contraction when they go from a state of rest 

to a state of motion in a given frame? 

8-10 From the geometry of the Minkowski diagram of a current- 

carrying wire (Fig. 8-15), calculate the ratio of positive to negative 

charge densities as observed in the rest frame of the electrons. [All 

you really need is the knowledge that the angle between the x and x' 

axes is tan-1 (v/c).] 

8-11 Two inertial frames, 5 and S', move with speed v with respect 

to one another. Along the x axis of 5 lies an infinitely long wire which 

is composed of stationary positive charges, and negative charges mov¬ 

ing in the x direction with speed v. Thus a current flows through the 

wire, although the net charge density in 5 is everywhere zero. What is 

the net charge density in 5'? Does this result imply that total charge 

is not conserved in a Lorentz transformation? Explain. [See D. L. 

Webster, Am. J. Phys., 29, 841 (1961), for a discussion and explanation 

of this phenomenon.] 

’In this and other problems in which the magnetic field B is explicitly intro¬ 
duced, the use of the MKS system is assumed. 
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Epilogue 

we shall end this account of special relativity—its theoretical 

bases, and some of its applications—by taking a brief look at 

the historical origins of the theory. It makes a fascinating story, 

many aspects of which have been recounted by Holton.1 

Although, as we have said, Einstein has a clear right to be 

called the father of special relativity, there were others who could 

have claimed to have some part in its parentage. The man who 

probably came closest to anticipating Einstein was the great 

French theoretician H. Poincare. He could not quite bring him¬ 

self to abandon the luminiferous ether, but he firmly believed in 

the relativity principle and in the fundamental impossibility of 

detecting absolute motion by means of optical observations. He 

asserted this in 1899, and expanded on his ideas in an impressive 

paper, published in 1904, entitled “The present state and the 

future of mathematical physics.”2 Almost half of this paper is 

devoted to essentially relativistic topics—the Lorentz contrac¬ 

tion, the increase of mass with velocity, the status of c as a limiting 

velocity in dynamics. He even considers the problem of compar¬ 

ing clocks by an exchange of light signals. It remains true, how¬ 

ever, that his discussion is rooted in Lorentz’s analysis of electro¬ 

magnetic phenomena, using the notions of a real contraction of 

lengths and of a so-called “local time” [defined formally by 

equations (3-14)]. Poincare did express his belief that the 

Lorentz theory was not the last word, but his remarks reveal 

that he was not himself ready with a superior theory. 

As for Lorentz—another of the truly great theoretical 

physicists (he was a Nobel prize winner in 1902)—the develop¬ 

ment of his transformations in 1904 never called in question the 

'G. Holton, Am. J. Phys.. 28, 627-636 (1960). 

2H. Poincare, Bull. Sci. Math.. 28, 302-323 (1904). 
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existence of the special reference frame of the ether, and 15 years 

later he still attached some value to the idea of absolute space. 

Another curious sidelight on this history is that the Lorentz 

transformations had, in essence, been discovered in 1887 by 

W. Voigt, who in that year published a theoretical paper about 

the Doppler effect (which can be regarded as the problem of 

observing a wave motion from different inertial frames). 

One last item of pre-Einsteinian history is that the need for 

some kind of correction factor on time measured in a moving 

system was recognized by Sir Joseph Larmor in 1900 as a con¬ 

comitant of the FitzGerald-Lorentz contraction, if one demanded 

invariance for the equations describing the properties of the ether. 

What, then, was Einstein’s uniquely important contribution? 

It was, as he himself recalled,1 his insight into the problem of 

measuring time, and it was the result of nearly 10 years of thought 

and speculation, beginning at age 16! From this stemmed every¬ 

thing else, including the Lorentz transformations and a new 

dynamics in which mass varied with velocity. It is all spelled 

out in his paper of 1905, which by almost universal agreement 

identifies Einstein as the true creator of relativity theory.2 His 

paper is a study in itself, not only for the richness of its content, 

but also for its silences. There is not a single reference to the 

scientific research literature. It appears quite certain that Einstein 

was unaware of Lorentz’s paper of the year earlier; he rederived 

the Lorentz transformations from scratch. But the really tantaliz¬ 

ing question is this: On what kind of a basis did Einstein in fact 

build his theory? When asked about this many years later, he 

said that he had been influenced by certain well-known optical 

observations (the aberration of starlight and the propagation of 

light in rapidly flowing water) but did not recall having had any 

knowledge, prior to 1905, of the Michelson-Morley experiment.3 

'See his autobiographical memoir in Albert Einstein: Philosopher-Scientist 

(P. A. Schilpp, ed.), Harper Torchbooks, New York, 1959. 

2It is one of the minor mysteries of scientific history that Sir Edmund Whit¬ 

taker, in the remarks quoted at the head of Chapter 3, should have been so 

unready to give Einstein his due. (He had no such reservations when it 

came to the general relativity theory.) Whittaker was a generally scrupulous 

and impeccable scholar, and his History of the Theories of Aether and Elec¬ 

tricity is a most fascinating and richly documented account of the develop¬ 

ment of physical thought—strongly recommended as background reading. 

3See R. S. Shankland, Am. J. Phys., 31, 47 (1963). But see also Shankland’s 

later article about the Michelson-Morley experiment in Am. J. Phys., 32, 16 

(1964). This quotes a letter written by Einstein in 1952 in which he did 

profess to have known about the Michelson-Morley experiment before 1905, 
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Yet this experiment was a classic; it had been performed 18 years 

earlier, and it was carried out in direct response to Maxwell’s 

speculations on the possibility of detecting the earth’s motion 

through space. One would think that by 1905 the results of the 

Michelson-Morley experiment, if not its details, must have been 

familiar to all physicists interested in such questions. Even if 

Einstein did not consciously recall the experiment, it is hard to 

believe that his thinking was not in some way influenced by it. 

When all this has been said, however, it must be admitted that 

Einstein had an extraordinary insight. He seemed to know the 

answers without benefit of anything more than a hint or two 

from nature; the rest was mere confirmation. This, indeed, was 

the characteristic mark of his genius. He proceeded in almost the 

same way (also in 1905) in setting forth the photon hypothesis 

and the photoelectric equation on the basis of scanty and in¬ 

conclusive data. It was for this latter work, incidentally, and not 

(at least nominally) as the creator of relativity that he was 

awarded the Nobel prize for physics in 1921.1 But relativity, 

taking the special and the general theories together, will un¬ 

doubtedly continue to be regarded as the chief monument to 

Einstein’s life in physics. (He published the general theory in 

1916.) It is, in the words of C. M oiler,2 “one of the most beautiful 

chapters in the history of science, which for the main part was 

written by a single man ....” 

as a result of reading Lorentz’s papers. Apparently his recollection of these 

matters, more than five decades after the events, was not entirely consistent. 

But he claimed on both occasions that other pieces of evidence played the 

largest part in shaping his thinking. 

'Alfred Nobel’s will stipulated that the prizes were to be for discoveries 

conferring benefit on mankind. It was apparently doubted whether a pure 

theory met this requirement, and the citation for the award read “For his 

contributions to mathematical physics, and especially for his discovery of 

the law of the photoelectric effect.” 

2C. Moller, in the preface to his book, The Theory of Relativity, Oxford 

Univ. Press, New York, 1952. 
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Answers to problems 

CHAPTER 1 

/-/ 6.3 °K. 

1-2 (a) 5.76 X 10-3 newton; (b) about 1 newton. 
1-3 (a) 6 X 108 newtons (gravitational force = 3.6 X 1022 new¬ 

tons); (b) about 2 X 10-7 m. 
1-4 About 0.5 cm. 
1-5 Reasonable estimates for the power to run a washing machine 

lead one to the result that the solar mass loss is occurring at the rate 
of a few million tons per second, which is about right. 

1-6 Of the order of a gram, perhaps. 
1-7 IO-14 (order of magnitude). 
1-9 About $50,000. 

1-10 4.7 X 1013 m. 
1-11 (a) 3.3 X 10“n; (b) 6.4 X 10"4; (c) about 10lloK. 
1-14 0.88" of arc. 
1-15 (a) c[rt(n + 2)]1/2/(« + 1); (b) moc[n(n + 2)]1/2. 
1-16 (a) 2000 volts; (b) 0.09c. 
1-17 (a) About 1.5; (b) about 0.75. 
1-18 c(l + moc2/hv)~\ 
1-20 (a) 21.3 MeV; (b) 1.2 X 10-3 newtons. 
1-21 (a) 10-10, 10-12, 10-°, 10-2, 0.65; (b) about 0.1c. 
1-23 Obtain the equations for vx and vy, taking account of the varia¬ 
tion of mass with energy, and solve for x and y separately as functions 
of t. 
1-24 A = *, B = *. 
1-25 1.82 X 1025 sec-1. No, speed at equator is greater than c. 
1-26 (a) 0.0025%; (b) 35%. 
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CHAPTER 2 

2-1 (a) 24°; (b) 61°; (c) 0.1 light-year (as compared to about 4 
light-years for the actual nearest star, a Centauri). 
2-3 (b) 1750 rpm. 
2-4 3.3 X 10-3 A. 
2-5 (b) About 30 sec; about 16 min. 
2-6 About 200 fringes. 
2-7 3.5 km/sec. 
2-9 (a) In most orientations cos 26 ^ 0; (b) 4; 0°, 90°, 180°, 270°; 

(c) 9.5 m/sec. 

CHAPTER 3 

3-2 (a) 2 X 10-4 fringe; (b) 0.08 fringe. 
3-3 (b) Yes. 
3-5 x = 93 m, / = 2.5 X 10-7 sec. 

3-6 (a) —c/2; (b) V3 x<)/c. 
3-7 (a) 1.25 X 10-?sec; (b) 2.25 X 10"7 sec. 
3-8 (c) (1) x' = 0.58, ct' = 0.58; (2) at = 1.73, ct = 1.73; 

(3) at = 2.31, ct = 1.15; (4) at' = -1.15, ct’ = 2.31. 

CHAPTER 4 

4-1 1.34 X 108 m. 
4-2 5.77 X 10~6 sec. 
4-3 (a) ±0.3 m; (b) 0.33 X 10“8sec; (c) 0.27 m, -0.34 m. 
4-4 (a) 105 years; (b) 5 min. 
4-5 (a) /0/c; (b) [(1 - 0)/(l + /3)]1/2/o/c; /o/7c. 
4-6 (a) 200 m; (b) 6.67 X 10-7sec; (c) 3.33 X 10“7 sec. 
4-7 (a) 4.67 X 10_8sec; (b) 6.7 m. 
4-8 /[(l - /3)/(l + /3)]172; (1 - ,3)71/c. 
4-9 (a) 2 X 107 m/sec; (b) 1 o’clock plus 4.99 X 10_6sec. 

4-10 8.63E0. 
4-11 About 0.9 X 10-8 sec. 
4-12 (a) 12:50 p.m.; (b) 7.2 X 10nm; (c) 1:30 p.m.; (d) 4:30 p.m. 

4-13 (a) 0.9950c to 0.9954c; 
(b) R(6) « Ro [1 + [(1 — cos 0)/7o] In /?o}, where R(6) is the count- 
rate ratio at 8 and Ro is the ratio at vertical incidence (for mesons 
having 7 = 7o). This result comes from using the relation 7(0) = 
1 + (7o — 1) sec 6. 
4-14 Acceleration of two rockets ceases at different times in final 
rest frame. 
4-15 (a) (1 —/3 cos 0)7//c; (b) (1 — (3 cos 0)7/. 

4-16 (a) cv7/4; (b) 3V2 /0/5. 
4-17 It fits through. 

4-18 For event 1: (a) yes, (b) no. For event 2: (a) no, (b) yes; 
v = 2.85 X 108 m/sec, if along direction of displacement between 
two events in 5. 

4-19 Causality not violated. 
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CHAPTER 5 

5-1 0.7c; 0.94c. 
5-2 0.991c; 0.213c. 
5-5 1 — exp[—nw(Ri + 7?2)2o/]; 

1 — exp[—mr(R\ + R2r(u + ^)(1 + uv/c2) Hi — v2/c2y/2t\ 
5-6 (a) c/3; (b) 20 m. 

5-8 (a) tan_1[(l — t>2/c2)1/2/( 1 — V2c/c)]; 
(b) tan_1[(l - o2/c2)1/2/( 1 - V2!?/«)]; 
(c) tan_1[(l — o2/c2)~1/2]. 

5-9 (a) i/0[(l - «/(! + 0)V/2; (b) ,o(l - »/(l + 0). 
5-10 (b) /0(1 - 0)/{\ + 0); (c) /ot(l - »/(! + 0)]U2. 
5-11 About 50 days. 
5-12 (a) A; (b) llc/61. 
5-13 (a) 1.6 X 1010 light-years; no. (b) 1.7 X 1010 light-years; no. 
5-14 About 1.5 X 1010 years. 
5-15 (a) 3600 A; (b) 3 X 106 years. 
5-16 (a) 22 km/sec, approaching; (b) about 0.01°; 
(c) 3600 km/sec; yes. 

5-17 (a) «-0[(l - 0)/(l + (3)]V2; (b) »0(1 - 0); (d) 2 x 10-15. 
5-18 x = [(1 + g2t2/c2)V2 - 1 ]c2/g(g = 9.8 m/sec2); 
t = *£ months, approx. 
5-20 (a) 533; (b) 267; (c) A gets 1333, B gets 1067; (d) A is 
younger by 2 years, 8 months. 
5-21 About 2 X 10-4 sec. 
5-22 (a) 0 = 0.99975 to 0.99997; (b) (0.9 to 2.7) X 10~14 sec; 

(c) (2.7 to 8.1) X 10-6 m; (d) 0.2 nsec, 0.1 /isec. 

CHAPTER 6 

6-1 300 MeV; 224 MeV; mass = 200 MeV; tan"1 0.5; o = 0.745c. 
6-2 (a) 5.66 GeV; (b) 4.3 amu; (c) 0.187c. 

6-3 vT7 wo. 

6-4 (a) c/(l + m0c2/E); (b) 4w0/V3; c/2. 
6-5 (a) tan-1 (A); 0.836c; (b) 4.75. 
6-6 (a) 0 = 10“5; blue shift of magnitude 02/2 because of aberra¬ 

tion; (b) red shift of magnitude /32/2; (c) no frequency shift. 
6-8 M0[7 - 1 + (72 - l)I/2]/2. 
6-9 (a) 33 watts; (b) 3.3 m/sec; (c) 66/3 watts, 0.7/u watt; 

(d) (i) An ever-increasing volume of space is being filled with 
radiation; (ii) kinetic energy is being continually taken up by the 
laser through its recoil. 
6-11 (a) 1.131 GeV, 4 MeV; (b) about 14°. 
6-12 (a) 2 GeV, § GeV; (b) 2 GeV forward, § GeV backward; 

(c) § GeV, 2 GeV; roles interchanged with respect to (a). 

6-13 (a) c/V3; (b) 1.2 MeV. 
6-15 (a) 84.0°; (b) 26.1°. 
6-16 c/[l + (w0c2/G)231/2. 
6-17 0.25 MeV (ignoring Compton recoils from nuclei). 
6-18 (a) 2.5 X 1020sec_1; the energy is typical of nuclear gamma 
rays; (b) woc2{[l + (Ihv/trtQC2)2]112 — 1}. 
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6-19 (a) 328 MeV; (b) 6 = 104.5°; Q = 228 MeV. 
6-20 850 MeV. 

CHAPTER 7 

7-1 K had 396 MeV kinetic energy; w has 616 MeV kinetic energy. 
7-2 2.04 MeV ( = 4m0c2). 
7-3 17.6 GeV. 
7-6 K = [(K* + M0c2)/( 1 - V2/c2)V2] - M0c2, where M0 = 

sum of rest masses. 

7-7 (a) E — E COS OC'f (b) Fabsorhpr = ^source COS OC — y Exonrcr* 

7-8 x = [(1 + g2t2/c2)1/2 — l]c2/g (g = 9.8 m/sec2); 
t = months, approx. 

7-9 (a) 23 mc/sec; (b) 9.7 MeV, 4.3 X 107 m/sec; (c) 49 rev, 
0.34 gsec; (d) the orbital frequency of the ions decreases because of 
the increase of mass at the higher energies, and the resonance con¬ 
dition is lost. 
7-10 (a) The (initial) momentum in the direction of the incident 
K~ meson is zero; (b) Sigma Minus. 

CHAPTER 8 

8-4 
8-5 

Fx = kqiq2/y2x2; F„ = 0; Fm„gm,tic = 0. 
Fx = ykqiq-2(x + uuuy/c2 + ouzz/c2)/(y2x2 + y2 
F„ = ykqiq2y(l — oux/c2)/(y2x2 + y2 + z2)3/2 

+ zz) 
2\3/2 

Fz = ykqiq2z(l - vux/c2)/(y2x2 + y2 + z2) 3/2 

8-6 Using MKS system: 
Zx' = Zx B' = Bx 

= T(S„ - wBz) Bu' = y(By + w&z/c2) 

Sz’ = T(S2 + wBy) Bz' = y(Bz - w&y/c2) 
8-7 Fx = 2k(q2\/b)(vUy/c2); Fy = lk(q2\/b)(\ — vux/c2)\ Fz = 0. 
8-8 (a) 7.4 X TO-3 m/sec, 7.4 X 10~5 m/sec, 7.4 X 10-7 m/sec; 

(b) 2 X 10-7 newton/m, 2 X 10-5 newton/m. 
8-9 The proper distance between electrons must increase. 

8-10 1 - /32. 
8-11 1/3(1 — /32)-1/2/c. Total charge is conserved, but one must 
consider the complete circuit, not the charge density along a limited 
section. 
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Davey, W. G„ 179 
De Broglie, L., 166 
De Vries, Tj. E., 140 
Dewan, E., 122 
Dog, in night-time, 36 
Doppler, C., 134 
Doppler effect, 134, 270 

and galactic red-shift, 138, 141 
and Mossbauer effect, 182 
and moving clocks, 149 
and Sputnik I, 139, 142 
and time dilation, 144 
considered dynamically, 197-99 
second-order, 144 
two-dimensional, 139 

Doyle, Sir A. C., 37 
Drag coefficient (Fresnel/Fizeau), 46 

from relativistic velocity-addition, 131 
Drake, Stillman, 67 
Dynamics, Newtonian, see Newtonian 

mechanics 

Eddington, Sir A. S., 30, 273 
Einstein, A., 2, 3, 5, 16, 19, 58, 62, 81, 88, 

124, 132, 228, 230, 269, 273 

and basic postulates of relativity, 65, 
70-72 

and quantum hypothesis, 199 
and twin paradox, 154 

“Einstein’s box,” 17, 27 
Elastic collisions, see Collisions 
Elastic scattering, see Scattering 
Electric field, defined, 234 

due to moving line charge, 251 
due to moving point charge, 242 
due to stationary line charge, 250 
transformations of, 266 

Electric force, 234 
due to moving point charge, 237-42 

Electrodynamics, 230 
Electrons, accelerated, 7 

Compton scattering by, 194, 203 
speed vs. energy, 9 

Energy, conservation of, 6, 19, 167 
inertia of, 16, 28 
Lorentz transformation of, 208 

Energy, kinetic, 7, 9, 10, 15, 22 
Energy levels, 178 
Energy-momentum invariant, 205, 213 
Energy/momentum relation, 21 
Equivalence principle, 159, 163, 200 
Ernst, Br., 140 
Ether, luminiferous, 39, 40, 44 

modern search for, 147 

“Ether-drag,” 45-48 
explained by special relativity theory, 131 

“Ether wind,” 54, 55, 64 

Event, see Point event 
Extinction effect, 128 

Farley, F. J. M., 74 
Feynman, R. P., 204 
FitzGerald, G. F., 63 
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